19.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,且|F1F2|=2c,若橢圓上存在點(diǎn)M使得$\frac{a}{sin∠M{F}_{1}{F}_{2}}$=$\frac{c}{sin∠M{F}_{2}{F}_{1}}$,則該橢圓離心率的取值范圍是($\sqrt{2}$-1,1).

分析 設(shè)|MF1|=m,|MF2|=n,∠MF1F2=α,∠MF2F1=β.△MF1F2中,由正弦定理可得:$\frac{n}{sinα}=\frac{m}{sinβ}=\frac{2c}{sin(α+β)}$,可得$\frac{n+m}{sinα+sinβ}$=$\frac{2a}{sinα+sinβ}$=$\frac{2c}{sin(α+β)}$,a(sinαcosβ+cosαsinβ)=csinα+csinβ.(*)已知$\frac{a}{sinα}=\frac{c}{sinβ}$,可得sinβ=$\frac{csinα}{a}$.代入可得acosβ=$c+\frac{{c}^{2}}{a}$-ccosα,利用同角三角函數(shù)的平方關(guān)系可得:a2=(csinα)2+$(c+\frac{{c}^{2}}{a}-ccosα)^{2}$,利用cosα∈[-1,1),化簡整理解出即可得出.

解答 解:設(shè)|MF1|=m,|MF2|=n,∠MF1F2=α,∠MF2F1=β.
△MF1F2中,由正弦定理可得:$\frac{n}{sinα}=\frac{m}{sinβ}=\frac{2c}{sin(α+β)}$,
∴$\frac{n+m}{sinα+sinβ}$=$\frac{2a}{sinα+sinβ}$=$\frac{2c}{sin(α+β)}$,
∴a(sinαcosβ+cosαsinβ)=csinα+csinβ.(*)
已知$\frac{a}{sinα}=\frac{c}{sinβ}$,∴sinβ=$\frac{csinα}{a}$.
代入可得acosβ=$c+\frac{{c}^{2}}{a}$-ccosα,
∴a2=(csinα)2+$(c+\frac{{c}^{2}}{a}-ccosα)^{2}$,
化為:cosα=$\frac{{a}^{4}-2{a}^{2}{c}^{2}-2a{c}^{3}-{c}^{4}}{2({a}^{2}{c}^{2}+a{c}^{3})}$∈[-1,1),
化為-1≤$\frac{1-2{e}^{2}-2{e}^{3}-{e}^{4}}{2{e}^{2}+2{e}^{3}}$<1,0<e<1,
化為e2+2e-1>0,
解得$\sqrt{2}-1$<e<1.
解得e∈($\sqrt{2}$-1,1).
故答案為:($\sqrt{2}$-1,1).

點(diǎn)評 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交問題、正弦定理、比例的性質(zhì)、三角函數(shù)化簡、同角三角函數(shù)基本關(guān)系式,考查了推理能力與計(jì)算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.根據(jù)所給條件求直線的方程:
(1)直線過點(diǎn)(-3,4),且在兩坐標(biāo)軸上的截距相等;
(2)直線過點(diǎn)(5,10),且到原點(diǎn)的距離為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)Sn是等比數(shù)列{an}的前n項(xiàng)和,若$\frac{{{S_{504}}}}{{{S_{1008}}}}$=$\frac{1}{10}$,則$\frac{{{S_{1008}}}}{{{S_{2016}}}}$=(  )
A.$\frac{1}{26}$B.$\frac{1}{82}$C.$\frac{2}{5}$D.$\frac{10}{729}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知表是某班學(xué)生的一次數(shù)學(xué)考試成績的分布表:
分?jǐn)?shù)段[0,90)[90,100)[100,110)[110,120)[120,130)[130,150]
人數(shù)88101266
那么,分?jǐn)?shù)在區(qū)間[100,110)內(nèi)的頻率和分?jǐn)?shù)不滿110分的頻率分別是(  )
A.0.44,0.52B.0.44,1C.0.20,0.48D.0.20,0.52

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8.設(shè)H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)},若max{p,q}表示p,q中的較大值,min{p,q}表示p,q中的較小值.記H1(x)的最小值為A,H2(x)的最大值為B,則B-A=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.雙曲線$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{m}$=1的離心率e=2,則雙曲線的漸近線方程為y=±$\frac{\sqrt{3}}{3}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某省就所制訂的《中長期教育改革和發(fā)展規(guī)劃綱要》(意見稿)向社會公開征求意見,為確保搜集的意見廣泛有效,派出了面向不同層次的三個工作組A、B、C,分別有組員36人、36人、18人.現(xiàn)采用分層抽樣的方法從A、B、C三個工作組中抽取共5名代表,在工作總結(jié)會上發(fā)言.
(1)求從三個工作組中分別抽取的人數(shù);
(2)若從抽取的5名代表中再隨機(jī)抽取2名參與意見稿的修改工作,求這兩名上沒有A組人員的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.θ是第二象限角,則下列選項(xiàng)中一定為正值的是( 。
A.sin$\frac{θ}{2}$B.cos$\frac{θ}{2}$C.tan$\frac{θ}{2}$D.cos2θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=ex+elnx-2ax在x∈(1,3)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,$\frac{{e}^{3}}{2}$+$\frac{e}{6}$)B.[($\frac{{e}^{3}}{2}$+$\frac{e}{6}$,+∞)C.(-∞,e)D.(-∞,e)

查看答案和解析>>

同步練習(xí)冊答案