【題目】已知,函數(shù),.

(1)指出的單調(diào)性(不要求證明);

(2)若有的值;

(3)若,求使不等式恒成立的的取值范圍.

【答案】(1)函數(shù)上為減函數(shù);(2);(3).

【解析】

試題分析:(1)當(dāng)時(shí),遞減,當(dāng)時(shí),遞減,當(dāng)時(shí),是減函數(shù);(2)觀察題目中的問(wèn)題,在考查函數(shù)奇偶性,因此可以構(gòu)造函數(shù),即,易得到結(jié)論函數(shù)上為奇函數(shù),因?yàn)?/span>,所以,則,所以,即得到要求的結(jié)果;(3)由(2)知上奇函數(shù)且在上為減函數(shù),由,根據(jù)減函數(shù)有,即轉(zhuǎn)化為不等式對(duì)任意實(shí)數(shù)恒成立,所以,則.

試題解析:(1)由題意有:

當(dāng)時(shí),遞減

當(dāng)時(shí),遞減

當(dāng)時(shí),是減函數(shù)

(2)設(shè)

定義域?yàn)?/span>,關(guān)于原點(diǎn)對(duì)稱(chēng).

為定義域?yàn)?/span>的奇函數(shù)

上奇函數(shù)

(3)由(2)知上奇函數(shù)且在上為減函數(shù)

即: 恒成立

綜上可知:t的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠生產(chǎn)某種零件,每個(gè)零件的成本為40元,出廠單價(jià)定為60元,該廠為鼓勵(lì)銷(xiāo)售商訂購(gòu),決定當(dāng)一次訂購(gòu)量超過(guò)100個(gè)時(shí),每多訂購(gòu)一個(gè),訂購(gòu)的全部零件的出廠單價(jià)就降低0.02元,但實(shí)際出廠單價(jià)不能低于51元.

(1)設(shè)一次訂購(gòu)量為個(gè),零件的實(shí)際出廠單價(jià)為元,寫(xiě)出函數(shù)的表達(dá)式;

(2)當(dāng)銷(xiāo)售商一次訂購(gòu)500個(gè)零件時(shí),該廠獲得的利潤(rùn)是多少元?如果訂購(gòu)1000個(gè),利潤(rùn)又是多少元?(工廠售出一個(gè)零件的利潤(rùn)=實(shí)際出廠單價(jià)-成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知與圓相切于點(diǎn),經(jīng)過(guò)點(diǎn)的割線交圓于點(diǎn),的平分線分別交于點(diǎn).

(1)證明:;

(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險(xiǎn)型產(chǎn)品的收益與投資額的算術(shù)平方根成正比,已知投資1萬(wàn)元時(shí)兩類(lèi)產(chǎn)品的收益分別為0125萬(wàn)元和05萬(wàn)元(如圖)

(1)分別寫(xiě)出兩種產(chǎn)品的收益與投資的函數(shù)關(guān)系;

(2)該家庭現(xiàn)有20萬(wàn)元資金,全部用于理財(cái)投資,問(wèn):怎樣分配資金能使投資獲得最大利潤(rùn),其最大收

益為多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=2x5+ax3+bx-3,若f(-4)=10,則f(4)=( )
A.16
B.-10
C.10
D.-16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以橢圓的中心為圓心,為半徑的圓稱(chēng)為該橢圓的“準(zhǔn)圓”.設(shè)橢圓的左頂點(diǎn)為,左焦點(diǎn)為,上頂點(diǎn)為,且滿(mǎn)足,.

1求橢圓及其“準(zhǔn)圓”的方程;

2)若橢圓的“準(zhǔn)圓”的一條弦(不與坐標(biāo)軸垂直)與橢圓交于、兩點(diǎn),試證明:當(dāng)時(shí),試問(wèn)弦的長(zhǎng)是否為定值,若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家具廠生產(chǎn)一種課桌,每張課桌的成本為50元,出廠單價(jià)為80元,該廠為鼓勵(lì)銷(xiāo)售商多訂購(gòu),決定一次訂購(gòu)量超過(guò)100張時(shí),每超過(guò)一張,這批訂購(gòu)的全部課桌出廠單價(jià)降低0.02元.根據(jù)市場(chǎng)調(diào)查,銷(xiāo)售商一次訂購(gòu)量不會(huì)超過(guò)1000張.

)設(shè)一次訂購(gòu)量為張,課桌的實(shí)際出廠單價(jià)為元,求關(guān)于的函數(shù)關(guān)系式;

)當(dāng)一次性訂購(gòu)量為多少時(shí),該家具廠這次銷(xiāo)售課桌所獲得的利潤(rùn)最大?其最大利潤(rùn)是多少元?(該家具廠出售一張課桌的利潤(rùn)=實(shí)際出廠單價(jià)-成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,,點(diǎn)在底面上的射影為線段的中點(diǎn)

(1)若為棱的中點(diǎn),求證:平面;

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有甲、乙兩種商品,經(jīng)銷(xiāo)這兩種商品所能獲得的利潤(rùn)分別是萬(wàn)元和萬(wàn)元,它們與投入資金萬(wàn)元的關(guān)系為:,今有3萬(wàn)元資金投入經(jīng)營(yíng)這兩種商品.問(wèn):對(duì)乙種商品的資金為多少萬(wàn)元時(shí),能獲得最大利潤(rùn)?最大利潤(rùn)為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案