求證:函數(shù)g(x)=|x+3|-|x-3|是R上的奇函數(shù).
考點:函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)奇函數(shù)的定義,即可得到結(jié)論.
解答: 解:∵g(x)=|x+3|-|x-3|,
∴g(-x)=|-x+3|-|-x-3|=|x-3|-|x+3|=-(|x+3|-|x-3|)=-g(x),
∴函數(shù)g(x)是奇函數(shù).
點評:本題主要考查函數(shù)奇偶性的判斷,根據(jù)函數(shù)奇偶性的定義是解決本題的關鍵,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

將函數(shù)y=sinx的圖象上所有的點向右平行移動
π
3
個單位長度,再把所得各點的橫坐標伸長到原來的2倍(縱坐標不變)得到函數(shù)f(x)的圖象,則f(-π)等于( 。
A、
3
2
B、-
3
2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設Sn是數(shù)列{an}的前n項和,對任意n∈N*都有2Sn=(kn+b)(a1+an)+p成立,(其中k、b、p是常數(shù)).
(1)當k=0,b=3,p=-4時,求Sn;
(2)當k=1,b=0,p=0時,
①若a3=3,a9=15,求數(shù)列{an}的通項公式;
②設數(shù)列{an}中任意(不同)兩項之和仍是該數(shù)列中的一項,則稱該數(shù)列是“Ω數(shù)列”.如果a2-a1=2,試問:是否存在數(shù)列{an}為“Ω數(shù)列”,使得對任意n∈N*,都有Sn≠0,且
1
12
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
11
18
.若存在,求數(shù)列{an}的首項a1的所有取值構(gòu)成的集合;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

假設關于某設備的使用年限x和所支出的維修費用y(萬元)有如下的統(tǒng)計資料:
使用年限x 2 3 4 5 6
維修費用y 2.2 3.8 5.5 6.5 7.0
若由資料知y對x呈線性相關關系.
(1)請畫出上表數(shù)據(jù)的散點圖;
(2)根據(jù)最小二乘法求出線性回歸方程
y
=
b
x+
a
的回歸系數(shù)
b
=1.23
;求出回歸方程.
(3)估計使用年限為10年時,維修費用是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(
x
-
3
x
)n
展開式的各項系數(shù)絕對值之和為1024,則展開式中x項的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

偶函數(shù)f(x)在區(qū)間[0,+∞)為單調(diào)減函數(shù),若f(1)<f(lgx),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx-ax2-x,a∈R.
(1)若函數(shù)y=f(x)在其定義域內(nèi)是單調(diào)增函數(shù),求實數(shù)a的取值范圍;
(2)若函數(shù)y=f(x)的圖象被點P(2,f(2))分成的兩部分為c1,c2,(點P除外),該函數(shù)圖象在點P處的切線為l,求證:當a=-
1
8
時,c1,c2分別完全位于直線l的兩側(cè).
(3)試確定a的取值范圍,使得曲線y=f(x)上存在唯一的點P,曲線在該點處的切線與曲線只有一個公共點P.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和為Sn,若a1=-11,a2=-9,則當Sn取最小值是,n=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,過左焦點F1作圓x2+y2=
1
4
a2的切線,切點為E,直線EF1交雙曲線右支于點P.若
OE
=
1
2
OF1
+
OP
),則雙曲線的離心率是( 。
A、
10
B、2
2
C、
10
2
D、
2

查看答案和解析>>

同步練習冊答案