5.若數(shù)列{an}為無窮等比數(shù)列,且$\underset{lim}{n→∞}$(a1+a2+a3+…+an)=$\frac{1}{7}$,則a1的取值范圍是{x|$0<x<\frac{2}{7}$,且$x≠\frac{1}{7}$}.

分析 數(shù)列{an}為無窮等比數(shù)列,且$\underset{lim}{n→∞}$(a1+a2+a3+…+an)=$\frac{1}{7}$,可得$\frac{{a}_{1}}{1-q}$=$\frac{1}{7}$,0<|q|<1,解出即可.

解答 解:∵數(shù)列{an}為無窮等比數(shù)列,且$\underset{lim}{n→∞}$(a1+a2+a3+…+an)=$\frac{1}{7}$,
∴$\frac{{a}_{1}}{1-q}$=$\frac{1}{7}$,0<|q|<1,
則a1=$\frac{1}{7}(1-q)$∈$(0,\frac{2}{7})$,且a1≠$\frac{1}{7}$.
∴a1的取值范圍是{x|$0<x<\frac{2}{7}$,且$x≠\frac{1}{7}$}.
故答案為:{x|$0<x<\frac{2}{7}$,且$x≠\frac{1}{7}$}.

點(diǎn)評 本題考查了無窮等比數(shù)列的前n項(xiàng)和公式、極限性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=(a2-3a+3)ax是指數(shù)函數(shù),則當(dāng)x∈[-1,2]時(shí),此函數(shù)的值域是(  )
A.[-2,4]B.[$\frac{1}{2}$,4]C.[-2,0)D.(-2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知集合A={a|關(guān)于x的方程$\frac{x+a}{{{x^2}-1}}=1$有唯一實(shí)數(shù)解,a∈R},用列舉法表示集合A=$\left\{{-1,1,-\frac{5}{4}}\right\}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若$\frac{1}{a}<\frac{1}<0$,有下面四個(gè)不等式:①|(zhì)a|>|b|;②a<b;③a+b<ab,④a3>b3,正確的不等式的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若數(shù)列{an}的前n項(xiàng)和Sn=4n2-5,則通項(xiàng)an=$\left\{\begin{array}{l}{-1,n=1}\\{8n-4,n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知${a_1}=1,{S_n}=n{a_n}-2n(n-1)(n∈{N^*})$.
(1)求證:數(shù)列{an}為等差數(shù)列,并求出其通項(xiàng)公式;
(2)若${S_1}+\frac{S_2}{2}+\frac{S_3}{3}+…+\frac{S_m}{m}=400$,求正整數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)f(x)=ax2+b|x|+c(a≠0)在定義域R上有四個(gè)單調(diào)區(qū)間,則實(shí)數(shù)a,b,c應(yīng)滿足的條件為a,b異號.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求下列函數(shù)的值域:
①y=sin(3x+$\frac{π}{6}$)(-$\frac{π}{6}≤x≤\frac{π}{6}$);
②y=2sin(2x+$\frac{π}{6}$),x$∈[-\frac{π}{6},\frac{π}{3}]$;
③y=sin($\frac{π}{4}-2x$)($-\frac{π}{4}≤x≤\frac{π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.圓C1;x2+y2+2x+8y-8=0與圓C2;x2+y2-4x+4y-8=0的位置關(guān)系是( 。
A.相交B.外切C.內(nèi)切D.相離

查看答案和解析>>

同步練習(xí)冊答案