若三角形內(nèi)切圓半徑為r,三邊長分別為a,b,c,則三角形的面積為S=
1
2
r(a+b+c),根據(jù)類比思想,若四面體內(nèi)切球半徑為R,四個面的面積分別為S1,S2,S3,S4,則這個四面體的體積為( 。
A、V=
1
6
R(S1+S2+S3+S4
B、V=
1
4
R(S1+S2+S3+S4
C、V=
1
3
R(S1+S2+S3+S4
D、V=
1
2
R(S1+S2+S3+S4
考點:類比推理
專題:計算題,推理和證明
分析:根據(jù)平面與空間之間的類比推理,由點類比點或直線,由直線 類比 直線或平面,由內(nèi)切圓類比內(nèi)切球,由平面圖形面積類比立體圖形的體積,結(jié)合求三角形的面積的方法類比求四面體的體積即可.
解答: 解:設(shè)四面體的內(nèi)切球的球心為O,
則球心O到四個面的距離都是R,
所以四面體的體積等于以O(shè)為頂點,
分別以四個面為底面的4個三棱錐體積的和.
即V=
1
3
R(S1+S2+S3+S4).
故選:C.
點評:解答的關(guān)鍵是熟悉類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個明確的命題(猜想).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2-x-1,x≤-1
2x+2,x>-1
,則f(a)>2的實數(shù)a的取值范圍是( 。
A、(-∞,-2)∪(0,+∞)
B、(-2,-1)
C、(-2,0)
D、(∞,-2)∪(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將函數(shù)f(x)=sin(2x+
π
3
)的圖象向左平移θ個單位,得到偶函數(shù)g(x)的圖象,則θ的最小正值為( 。
A、
π
12
B、
5
12
π
C、
π
3
D、
π
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果
a
b
是兩個單位向量,那么下列四個結(jié)論中正確的是( 。
A、
a
=
b
B、
a
b
=1
C、
a
2
b
2
D、|
a
|2=|
b
|2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)x,y∈R,則“x≥2且y≥2”是“x2+y2≥4”的(  )條件.
A、充分不必要
B、必要不充分
C、充分必要
D、不充分不必要

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=k
x-1
x+1

(1)求函數(shù)F(x)=f(x)-g(x)的單調(diào)區(qū)間;
(2)當x>1時,函數(shù)f(x)>g(x)恒成立,求實數(shù)k的取值范圍;
(3)求證:ln(1+
1
12
)+ln(1+
1
22
)+…+ln(1+
1
n2
)>
n
n+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(2sin(ωx+
3
),2),
b
=(2cosωx,0)(ω>0),函數(shù)f(x)=
a
b
的圖象與直線y=-2+
3
的相鄰兩個交點之間的距離為π,
(1)求ω的值;
(2)求函數(shù)f(x)在[0,π]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知方程2x2+3x-m=0,問:m為何值時,
(1)方程有一個根為0;
(2)方程的兩個實根互為倒數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為了檢測某種新研制出的禽流感疫苗對家禽的免疫效果,某研究中心隨機抽取了50只雞作為樣本,進行家禽免疫效果試驗,得到如下缺少部分數(shù)據(jù)的2×2列聯(lián)表.已知用分層抽樣的方法,從對禽流感病毒沒有免疫力的20只雞中抽取8只,恰好抽到2只注射了該疫苗的雞.
(Ⅰ)從抽取到的這8只雞隨機抽取3只進行解剖研究,求至少抽到1只注射了該疫苗的雞的概率;
(Ⅱ)完成下面2×2列聯(lián)表,并幫助該研究和縱向判斷:在犯錯誤的概率不超過0.5%的前提下,能否認為這種新研制出的禽流感疫苗對家禽具有免疫效果?
有免疫力沒有免疫力  總計
 有注射疫苗  20
 沒有注射疫苗
    總計   20   50

查看答案和解析>>

同步練習冊答案