【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求的普通方程和極坐標(biāo)方程;

(2)若相交于、兩點(diǎn),且,求的值.

【答案】(1) 的普通方程為.極坐標(biāo)方程為.

(2)

【解析】

(1)首先可根據(jù)參數(shù)方程的定義寫(xiě)出曲線的普通方程,再根據(jù)極坐標(biāo)方程的即可寫(xiě)出曲線的極坐標(biāo)方程;

(2)本題首先可以設(shè)為原點(diǎn),然后根據(jù)寫(xiě)出點(diǎn)的極坐標(biāo),將點(diǎn)的極坐標(biāo)代入的極坐標(biāo)方程中求出的值,最后將點(diǎn)的極坐標(biāo)代入的極坐標(biāo)方程中即可求出的值。

(1)由曲線的參數(shù)方程為可得,

再將其帶入中,即可得到曲線的普通方程為,

代入

即可得到曲線的極坐標(biāo)方程為。

(2)由題意可知,顯然有一個(gè)公共點(diǎn)為原點(diǎn),

不妨設(shè)點(diǎn)為原點(diǎn),由可設(shè)點(diǎn)的極坐標(biāo)為.

代入的極坐標(biāo)方程得,即,又,所以,

再把代入的極坐標(biāo)方程得,解得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù) ,,已知有三個(gè)互不相等的零點(diǎn),且.

(Ⅰ)若.(ⅰ)討論的單調(diào)區(qū)間;(ⅱ)對(duì)任意的,都有成立,求的取值范圍;

(Ⅱ)若,設(shè)函數(shù),處的切線分別為直線,是直線,的交點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的底面為直角梯形,,且,,,平面底面,的中點(diǎn),為等邊三角形,是棱上的一點(diǎn),設(shè)不重合).

1)當(dāng)時(shí),求三棱錐的體積;

2)若平面,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)統(tǒng)計(jì)調(diào)查數(shù)據(jù)顯示:某企業(yè)某種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,從該企業(yè)生產(chǎn)的這種產(chǎn)品(數(shù)量很大)中抽取100件,測(cè)量這100件產(chǎn)品的質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得到如圖所示的頻率分布直方圖,質(zhì)量指標(biāo)值落在區(qū)間,,內(nèi)的頻率之比為.

1)求這100件產(chǎn)品質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的頻率;

2)根據(jù)頻率分布直方圖求平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

3)若取這100件產(chǎn)品指標(biāo)的平均值,從這種產(chǎn)品(數(shù)量很大)中任取3個(gè),求至少有1個(gè)落在區(qū)間的概率.

參考數(shù)據(jù):,若,則;.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一大批產(chǎn)品,其驗(yàn)收方案如下,先做第一次檢驗(yàn):從中任取8件,經(jīng)檢驗(yàn)都為優(yōu)質(zhì)品時(shí)接受這批產(chǎn)品,若優(yōu)質(zhì)品數(shù)小于6件則拒收;否則做第二次檢驗(yàn),其做法是從產(chǎn)品中再另任取3件,逐一檢驗(yàn),若檢測(cè)過(guò)程中檢測(cè)出非優(yōu)質(zhì)品就要終止檢驗(yàn)且拒收這批產(chǎn)品,否則繼續(xù)產(chǎn)品檢測(cè),且僅當(dāng)這3件產(chǎn)品都為優(yōu)質(zhì)品時(shí)接受這批產(chǎn)品.若產(chǎn)品的優(yōu)質(zhì)品率為0.9.且各件產(chǎn)品是否為優(yōu)質(zhì)品相互獨(dú)立.

1)記為第一次檢驗(yàn)的8件產(chǎn)品中優(yōu)質(zhì)品的件數(shù),求的期望與方差;

2)求這批產(chǎn)品被接受的概率;

3)若第一次檢測(cè)費(fèi)用固定為1000元,第二次檢測(cè)費(fèi)用為每件產(chǎn)品100元,記為整個(gè)產(chǎn)品檢驗(yàn)過(guò)程中的總費(fèi)用,求的分布列.

(附:,,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),aR

(Ⅰ)當(dāng)a=1時(shí),求曲線y=fx)在點(diǎn)(0,f0))處的切線方程;

(Ⅱ)求fx)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè).

1)若,且為函數(shù)的一個(gè)極值點(diǎn),求函數(shù)的單調(diào)遞增區(qū)間;

2)若,且函數(shù)的圖象恒在軸下方,其中是自然對(duì)數(shù)的底數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校舉辦《國(guó)學(xué)》知識(shí)問(wèn)答中,有一道題目有5個(gè)選項(xiàng)AB,C,DE,并告知考生正確選項(xiàng)個(gè)數(shù)不超過(guò)3個(gè),滿分5分,若該題正確答案為,賦分標(biāo)準(zhǔn)為選對(duì)1個(gè)得2分,選對(duì)2個(gè)得4分,選對(duì)3個(gè)得5分,每選錯(cuò)1個(gè)扣3分,最低得分為0”.假定考生作答的答案中的選項(xiàng)個(gè)數(shù)不超過(guò)3個(gè).

1)若張小雷同學(xué)無(wú)法判斷所有選項(xiàng),只能猜,他在猶豫答案是任選1個(gè)選項(xiàng)作為答案或者任選2個(gè)選項(xiàng)作為答案或者任選3個(gè)選項(xiàng)作為答案,以得分期望為決策依據(jù),則他的最佳方案是哪一種?說(shuō)明理由.

2)已知有10名同學(xué)的答案都是3個(gè)選項(xiàng),且他們的答案互不相同,他們此題的平均得分為x分.現(xiàn)從這10名同學(xué)中任選3名,計(jì)算得到這3名考生此題得分的平均分為y分,試求的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,

已知圓和圓.

1)若直線過(guò)點(diǎn),且被圓截得的弦長(zhǎng)為,

求直線的方程;(2)設(shè)P為平面上的點(diǎn),滿足:

存在過(guò)點(diǎn)P的無(wú)窮多對(duì)互相垂直的直線,

它們分別與圓和圓相交,且直線被圓

截得的弦長(zhǎng)與直線被圓截得的弦長(zhǎng)相等,試求所有滿足條件的點(diǎn)P的坐標(biāo)。

查看答案和解析>>

同步練習(xí)冊(cè)答案