若x=1滿足不等式ax2+2x+1<0,則實(shí)數(shù)a的取值范圍是( 。
A、(-∞,-3)
B、(-3,+∞)
C、(1,+∞)
D、(-∞,1)
考點(diǎn):一元二次不等式的應(yīng)用
專題:計(jì)算題,不等式的解法及應(yīng)用
分析:由x=1滿足不等式ax2+2x+1<0,可得a+2+1<0,即可求出實(shí)數(shù)a的取值范圍.
解答: 解:∵x=1滿足不等式ax2+2x+1<0,
∴a+2+1<0,
∴a<-3.
故選:A.
點(diǎn)評(píng):本題考查不等式的解法,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U={1,2,3,4,5,6},集合A={1,2,3},B={2,4,5},則CU(A∩B)=( 。
A、{2}
B、{6}
C、{1,3,4,5,6}
D、{1,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin(
π
3
-2x)的單調(diào)遞減區(qū)間是( 。
A、[-kπ+
π
6
,-kπ+
3
],k∈Z
B、[2kπ-
π
12
,2kπ+
12
],k∈Z
C、[kπ-
π
6
,kπ+
π
3
],k∈Z
D、[kπ-
π
12
,kπ+
12
],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a4+a6=
2
0
4-x2
dx
,則a6(a2+2a4+a6)的值為(  )
A、π2B、4
C、πD、-9π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin(2x+
π
3
)(x∈R)的最小正周期為( 。
A、
π
2
B、4π
C、2π
D、π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若a2-c2=2b,
tanA
tanC
=3,則b等于( 。
A、3B、4C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
log0.5(x-4)
定義域?yàn)椋ā 。?/div>
A、[5,+∞)
B、(-∞,5]
C、(4,5]
D、(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋擲紅、藍(lán)兩顆骰子,設(shè)事件A為“藍(lán)色骰子的點(diǎn)數(shù)為3或6”,事件B為“兩顆骰子的點(diǎn)數(shù)之和大于8”.
(1)求P(A),P(B),P(AB).
(2)當(dāng)已知藍(lán)色骰子點(diǎn)數(shù)為3或6時(shí),問兩顆骰子的點(diǎn)數(shù)之和大于8的概率為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2ax+4.
(1)若函數(shù)f(x)滿足f(1+x)=f(1-x),求函數(shù)在x∈[-2,2]的值域;
(2)在區(qū)間[-1,1]上,y=f(x)的圖象恒在y=2x+1的圖象上方,試確定實(shí)數(shù)a的范圍.
(3)若方程f(x)=0在[-1,1]上有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案