分析 (1)先將函數(shù)式化簡,再結(jié)合正弦曲線就單調(diào)區(qū)間;
(2)運(yùn)用兩角和的余弦公式求值.
解答 解:(1)f(x)=2($\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x)=2sin(2x-$\frac{π}{6}$),
要求函數(shù)的單調(diào)增區(qū)間,只需令2x-$\frac{π}{6}$∈[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],
解得x∈[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],
即f(x)的單調(diào)增區(qū)間為[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$](k∈Z);
(2)f(θ)=2sin(2θ-$\frac{π}{6}$)=$\frac{6}{5}$,
所以,sin(2θ-$\frac{π}{6}$)=$\frac{3}{5}$,
又因?yàn)棣取蔥0,$\frac{π}{4}$],所以2θ-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{π}{3}$],
因此,cos(2θ-$\frac{π}{6}$)=$\frac{4}{5}$,
而cos2θ=cos[(2θ-$\frac{π}{6}$)+$\frac{π}{6}$]
=cos(2θ-$\frac{π}{6}$)cos$\frac{π}{6}$-sin(2θ-$\frac{π}{6}$)sin$\frac{π}{6}$=$\frac{4\sqrt{3}-3}{10}$,
即cos2θ=$\frac{4\sqrt{3}-3}{10}$.
點(diǎn)評(píng) 本題主要考查了三角函數(shù)的恒等變形,兩角和與差的三角函數(shù),三角函數(shù)的圖象和性質(zhì),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | C${\;}_{5}^{2}$A${\;}_{4}^{4}$ | B. | C${\;}_{5}^{2}$64 | C. | A${\;}_{5}^{2}$A${\;}_{4}^{4}$ | D. | A${\;}_{5}^{2}$64 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com