已知xi>0(i=1,2,3,…,n),我們知道有(x1+x2)(
1
x1
+
1
x2
)≥4成立.
(Ⅰ)請證明(x1+x2+x3)(
1
x1
+
1
x2
+
1
x3
)≥9;
(Ⅱ)同理我們也可以證明出(x1+x2+x3+x4)(
1
x1
+
1
x2
+
1
x3
+
1
x4
)≥16
由上述幾個不等式,請你猜測與x1+x2+…+xn
1
x1
+
1
x2
+…+
1
xn
(n≥2,n∈N*)有關的不等式,并用數(shù)學歸納法證明.
考點:數(shù)學歸納法,基本不等式
專題:綜合題,點列、遞歸數(shù)列與數(shù)學歸納法
分析:(Ⅰ)利用基本不等式,即可證明(x1+x2+x3)(
1
x1
+
1
x2
+
1
x3
)≥9;
(Ⅱ)猜測(x1+x2+…+xn)(
1
x1
+
1
x2
+…+
1
xn
)≥n2(n≥2),再用數(shù)學歸納法證明.
解答: 證明:(Ⅰ)(x1+x2+x3)(
1
x1
+
1
x2
+
1
x3
)=3+(
x1
x2
+
x2
x1
)+(
x1
x3
+
x3
x1
)+(
x2
x3
+
x3
x2
)≥3+2+2+2=9,
∴(x1+x2+x3)(
1
x1
+
1
x2
+
1
x3
)≥9
(Ⅱ)猜測滿足的不等式為(x1+x2+…+xn)(
1
x1
+
1
x2
+…+
1
xn
)≥n2(n≥2),
證明如下:
(1)當n=1時,x1
1
x1
≥1,猜想成立;當n=2時,(x1+x2)(
1
x1
+
1
x2
)≥4,猜想成立;
(2)假設當n=k時,猜想成立,即(x1+x2+…+xk)(
1
x1
+
1
x2
+…+
1
xk
)≥k2,
那么n=k+1時,(x1+x2+…+xk+1)(
1
x1
+
1
x2
+…+
1
xk
+
1
xk+1
)=(x1+x2+…+xk)(
1
x1
+
1
x2
+…+
1
xk
)+xk+1
1
x1
+
1
x2
+…+
1
xk
)+(x1+x2+…+xk
1
xk+1
+1≥k2+2k+1=(k+1)2
則當n=k+1時猜想也成立,
根據(jù)(1)(2)可得猜想對任意的n∈N,n≥1都成立.
點評:本題以已知不等式為載體,考查類比推理,考查數(shù)學歸納法,關鍵是第二步,同時應注意利用歸納假設.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設a,b為正實數(shù),若
1
b
-
1
a
=1,判斷a-b與1的大小關系,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知棱錐V-ABCD的高為h,底面是矩形,側棱VD垂直于底面ABCD,另外兩側面VBC,VBA和底面分別成30°和45°角,求棱錐的全面積S

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)f(x)=x2-2ax+2在區(qū)間[0,2]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=x+bx2+alnx,又y=f(x)的圖象過P(1,1)點,且在P處切線的斜率為2.
(1)求a,b的值
(2)證明f(x)≤2x-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求證:如果一條直線垂直于兩個平面,那么這兩個平面平行.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax+x2-xlna(a>0且a≠1).
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)比較f(1)與f(-1)的大;
(Ⅲ)若對任意x1,x2∈[-1,1],|f(x1)-f(x2)|≤e-1恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=lnx+
a
2
x2-(a+1)x(a為常數(shù)).
(1)當a=2時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當x>1時,若f(x)<
a
2
x2-x-a,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算下列定積分的值:(1)
π
4
0
cos2
x
2
dx

                  (2)
2
-1
|x2-x|dx

查看答案和解析>>

同步練習冊答案