已知數(shù)列{an}的前n項(xiàng)和Sn=n(n-6),數(shù)列{bn}滿足b2=3,bn+1=3bn(n∈N*
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)的公式
(Ⅱ)記數(shù)列{anbn}的前n項(xiàng)和為Tn,求Tn<2014時(shí)n的最大值.
考點(diǎn):等差數(shù)列與等比數(shù)列的綜合,數(shù)列與不等式的綜合
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(Ⅰ)當(dāng)n≥2時(shí),an=Sn-Sn-1,驗(yàn)證n=1,可求數(shù)列{an}的通項(xiàng)的公式;利用bn+1=3bn,可得{bn}的通項(xiàng)的公式
(Ⅱ)利用錯(cuò)位相減法求數(shù)列{anbn}的前n項(xiàng)和為Tn,從而可求Tn<2014時(shí)n的最大值.
解答: 解:(Ⅰ)當(dāng)n≥2時(shí),an=Sn-Sn-1=2n-7,
又a1=S1=-5=2×1-7,∴an=2n-7.
又bn+1=3bn,所以{bn}是公比為3的等比數(shù)列,bn=3n-1
(Ⅱ)Tn=(-5)•1+(-3)•3+…+(2n-7)•3n-1①,
3Tn=(-5)•3+(-3)•32+…+(2n-7)•3n
①-②得,-2Tn=(-5)•1+2•3+2•32+…+2•3n-1-(2n-7)•3n
=-5+
6(1-3n-1)
1-3
-(2n-7)•3n
=-8+3n-(2n-7)•3n=-8-(2n-8)•3n
所以Tn=(n-4)•3n+4
Tn=(n-4)•3n+4<2014得n≤6,
所以n的最大值為6.
點(diǎn)評(píng):本題綜合考查了等差數(shù)列與等比數(shù)列的性質(zhì)的綜合應(yīng)用,考查錯(cuò)位相減法,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)2×(
32
×
3
6+(
2
2
)
4
3
-4×(
16
49
)
1
2
-
42
×80.25+(-2014)0
(2)log2.56.25+lg
1
100
+ln(e
e
)+log2(log216)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=2|x-1|-3|x|,對(duì)任意的x有f(x)≤m恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項(xiàng)a1=1,且存在常數(shù)p,r,t(其中r≠0),使得an+an+1=r•2n-1與an+1=pan-pt對(duì)任意正整數(shù)n都成立;數(shù)列{bn}為等差數(shù)列.
(1)求常數(shù)p,r,t.并寫出數(shù)列{an}的通項(xiàng)公式;
(2)如果{bn}滿足條件:①b1為正整數(shù);②公差為1;③項(xiàng)數(shù)為m(m為常數(shù));④2(1+
1
b1
)(1+
1
b2
)(1+
1
b3
)…(1+
1
bn
)=log2am,試求所有滿足條件的m值.
(3)如果數(shù)列{an}與數(shù)列{bn}沒有公共項(xiàng),數(shù)列{an}與{bn}的所有項(xiàng)按從小到大的順序排列成:1,c2,c3,c4,4,…,且1,c2,c3,c4,4成等比數(shù)列,試求滿足條件的所有數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2lnx
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)證明:對(duì)任意的t>0,存在唯一的s,使t=f(s);
(3)設(shè)(2)中所確定的s關(guān)于t的函數(shù)為s=g(t),證明:當(dāng)t>e2時(shí),有0<
lng(t)
lnt
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知定義在R上的函數(shù)f(x),對(duì)任意實(shí)數(shù)x1,x2都有f(x1+x2)=1+f(x1)+f(x2),且f(1)=1.
(1)若對(duì)任意正整數(shù)n,有an=f(
1
2n
)+1,求a1、a2的值,并證明{an}為等比數(shù)列;
(2)設(shè)對(duì)任意正整數(shù)n,有bn=
1
f(n)
,若不等式bn+1+bn+2+…+b2n
6
35
log2(x+1)對(duì)任意不小于2的正整數(shù)n都成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某地區(qū)注重生態(tài)環(huán)境建設(shè),每年用于改造生態(tài)環(huán)境總費(fèi)用為x億元(x∈[a,b]),其中用于風(fēng)景區(qū)改造費(fèi)用為y億元.該市決定建立生態(tài)環(huán)境改造投資方案,該方案要求同時(shí)具備下列條件:
①每年用于風(fēng)景區(qū)改造費(fèi)用隨每年改造生態(tài)環(huán)境總費(fèi)用增加而增加;
②每年用于風(fēng)景區(qū)改造費(fèi)用不得低于改造生態(tài)環(huán)境總費(fèi)用的15%,但不得高于改造生態(tài)環(huán)境總費(fèi)用的22%.
(1)若a=2,b=2.5,請(qǐng)你分析能否采用函數(shù)模型y=
1
100
(x3+4x+16)作為生態(tài)環(huán)境改造投資方案;
(2)若a,b取正整數(shù),并用函數(shù)模型y=
1
100
(x3+4x+16)作為生態(tài)環(huán)境改造投資方案,請(qǐng)你求出a,b的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=-(x-1)2+m,g(x)=xex,若?x1,x2∈R,使得f(x1)≥g(x2)成立,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,∠A=60°,b=1,S△ABC=2
3
,則△ABC外接圓直徑為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案