在如圖圖形中,小黑點的個數(shù)構(gòu)成一個數(shù)列{an}的前3項.
(1)a5=
 
;
(2)數(shù)列{an}的一個通項公式an=
 
考點:歸納推理
專題:推理和證明
分析:觀察圖形特點,從中找出規(guī)律,它們的點數(shù)分別是;1,4,7,…,總結(jié)出其規(guī)律,根據(jù)規(guī)律求解.
解答: 解:通過觀察,得到點的個數(shù)分別是:
a1=1,
a2=4,
a3=7,

可歸納推理為:
數(shù)列{an}是一個以1為首項,以3為公差的等差數(shù)列,
故an=3n-2,
當(dāng)n=5時,a5=13,
故答案為:13,3n-2
點評:此題主要考查了學(xué)生分析問題、觀察總結(jié)規(guī)律的能力.關(guān)鍵是通過觀察分析得出規(guī)律,數(shù)列{an}一個首項是1,公差是3的等差數(shù)列.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在△ABC中,
BC
=
2
BD
,AD⊥AB,|
AD
|=1,求
AC
AD
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(4
4
1
x
+
3x2
n展開式中的倒數(shù)第三項的二項式系數(shù)為45,則n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,直線l的參數(shù)方程為
x=t+2
y=2-t
(參數(shù)t∈R),圓C的參數(shù)方程為
x=2cosθ
y=2sinθ+2
(參數(shù)θ∈[0,2π)),直線l交圓C于A、B兩點,則|AB|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=
4+3i
(1-2i)2
,則|z|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是函數(shù)y=Asin(ωx+φ)+b(A>0,ω>0,|φ|<
π
2
)的圖象的一部分,則函數(shù)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀下題的解題方法:
例題:已知x>0,y>0,且x+y=1,求
1
x
+
2
y
的最小值.
解:
1
x
+
2
y
=(x+y)(
1
x
+
2
y
)=1+
2x
y
+
y
x
+2≥3+2
2x
y
y
x
=3+2
2
,當(dāng)且僅當(dāng)
2x
y
=
y
x
x+y=1.
時,即
x=
2
-1
y=2-
2
.
時,取等號.∴當(dāng)
x=
2
-1
y=2-
2
.
時,
1
x
+
2
y
取最小值,其最小值為3+2
2

類比上述解題方法,可求得函數(shù)f(x)=
4
x
+
9
1-2x
,x∈(0,
1
2
)的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此進行了5次試驗.根據(jù)收集到的數(shù)據(jù)(如下表),由最小二乘法求得回歸方程
y
=0.74x+50
零件數(shù)x(個)1020304050
加工時間y(min)62mn8189
則m+n的值為( 。
A、137B、129
C、121D、118

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(π-α)=-
12
13
,π<α<
2
,則tanα=( 。
A、
5
12
B、-
5
12
C、
12
5
D、-
12
5

查看答案和解析>>

同步練習(xí)冊答案