設(shè)
a
,
b
c
為非零向量,已知向量
a
b
不共線,
a
c
共線,則向量
b
c
( 。
A、一定不共線B、一定共線
C、不一定共線D、可能相等
考點(diǎn):平行向量與共線向量
專題:平面向量及應(yīng)用
分析:利用向量共線定理和反證法即可得出.
解答: 解:∵向量
a
b
不共線,
a
c
共線,
∴向量
b
c
一定不共線,否則向量
a
b
共線,出現(xiàn)矛盾.
故選:A.
點(diǎn)評(píng):本題考查了向量共線定理和反證法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x-1,x≤0
log2x+1,x>0
,則f(f(
1
4
))( 。
A、-
1
2
B、
1
2
C、1
D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某社區(qū)有400個(gè)家庭,其中高等收入家庭120戶,中等收入家庭180戶,低收入家庭100戶.為了調(diào)查社會(huì)購(gòu)買力的某項(xiàng)指標(biāo),要從中抽取一個(gè)容量為100的樣本,記作①;某校高一年級(jí)有13名排球運(yùn)動(dòng)員,要從中選出3人調(diào)查學(xué)習(xí)負(fù)擔(dān)情況,記作②.那么,完成上述2項(xiàng)調(diào)查宜采用的抽樣方法是(  )
A、①用簡(jiǎn)單隨機(jī)抽樣,②用系統(tǒng)抽樣
B、①用分層抽樣,②用簡(jiǎn)單隨機(jī)抽樣
C、①用系統(tǒng)抽樣,②用分層抽樣
D、①用分層抽樣,②用系統(tǒng)抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(1+2x)n的展開式中所有系數(shù)之和等于729,那么這個(gè)展開式中x3項(xiàng)的系數(shù)是(  )
A、56B、160
C、80D、180

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=(x-1)2的導(dǎo)數(shù)是( 。
A、-2
B、(x-1)2
C、2(x-1)
D、2(1-x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sin2x-4sinx+5的值域?yàn)椋ā 。?/div>
A、[1,+∞]
B、(1,+∞)
C、[2,10]
D、[1,10]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若將函數(shù)y=
2
sin(2x+
π
4
)的圖象上所有的點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再向左平行移動(dòng)
π
4
個(gè)長(zhǎng)度單位,則所得的函數(shù)圖象對(duì)應(yīng)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|
3
2
-x|.
(Ⅰ)求不等式f(x)≤
5
2
的解集;
(Ⅱ)如果存在x∈[-2,4],使不等式f(x)+f(x+2)≥m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C的參數(shù)方程為
x=
t2-4
t2+4
y=
8t
t2+4
(t為參數(shù)).
(1)求曲線C的普通方程;
(2)過(guò)點(diǎn)P(0,1)的直線l與曲線C交于A,B兩點(diǎn),求|PA|•|PB|的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案