5.簡答題
已知tanα=2,求下列各式的值
(1)$\frac{sinα+3cosα}{3sinα-cosα}$(2)$\frac{2si{n}^{2}α-co{s}^{2}α}{si{n}^{2}α+sinαcosα}$.

分析 直接利用同角三角函數(shù)的基本關(guān)系式化簡所求表達(dá)式為正切函數(shù)的形式,代入求解即可.

解答 解:tanα=2,
(1)$\frac{sinα+3cosα}{3sinα-cosα}$
=$\frac{tanα+3}{3tanα-1}$
=$\frac{2+3}{6-1}$
=1.
(2)$\frac{2si{n}^{2}α-co{s}^{2}α}{si{n}^{2}α+sinαcosα}$
=$\frac{2ta{n}^{2}α-1}{ta{n}^{2}α+tanα}$
=$\frac{4-1}{4+2}$=$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查同角三角函數(shù)的基本關(guān)系式的應(yīng)用,三角函數(shù)的化簡求值,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.log3$\sqrt{27}$+lg25+lg4+6${\;}^{lo{g}_{6}2}$+(-8.2)0=$\frac{13}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若x∈R,則函數(shù)f(x)=3-5sinx-cos2x的最小值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在等比數(shù)列{an}中,a1=$\frac{1}{4}$,8a2,3a3,a4成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=log16an,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知平行四邊形ABCD的三個(gè)頂點(diǎn)為A(-3,0),B(2,-2),C(5,2),且對(duì)角線交點(diǎn)為M,求頂點(diǎn)D的坐標(biāo)及點(diǎn)M坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=$\frac{{a}^{x}-1}{{a}^{x}+1}$,若f(x)是定義在區(qū)間[a-6,2a]上的奇函數(shù),則f($\frac{a}{2}$)=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知f(x)=sin($\frac{1}{2}$x+$\frac{π}{3}$),g(x)的圖象與f(x)的圖象關(guān)于y軸對(duì)稱,將g(x)圖象上各點(diǎn)的橫坐標(biāo)縮短為原來的$\frac{1}{2}$(縱坐標(biāo)不變),再向左平移$\frac{π}{3}$個(gè)單位,那么所得圖象的一條對(duì)稱軸方程為(  )
A.x=$\frac{π}{6}$B.x=$\frac{π}{2}$C.x=-$\frac{π}{6}$D.x=-π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=tan(x+φ)的圖象的-個(gè)對(duì)稱中心為($\frac{π}{3}$,0)且,|φ|<$\frac{π}{2}$.則φ=$\frac{π}{6}$或-$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=$\frac{|x|+1}{|x+1|}$,
(1)畫出該函數(shù)的圖象;
(2)寫出它的定義域,單調(diào)區(qū)間,奇偶性,值域;
(3)若方程a=$\frac{|x|+1}{|x+1|}$有兩個(gè)實(shí)根,求出實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案