11.已知函數(shù)f(x)=lg(100x+1)-ax,x∈R.
(Ⅰ)若函數(shù)f(x)是偶函數(shù),求實數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下證明,函數(shù)f(x)在[0,+∞)上是單調(diào)函數(shù).

分析 (I)由于函數(shù)f(x)是偶函數(shù),可得f(-x)=f(x),解出即可.
(II)由幾何畫板畫出x≥0時函數(shù)f(x)=lg(100x+1)-x的圖象,函數(shù)f(x)是單調(diào)遞增函數(shù).任意取0≤x1<x2,f(x2)-f(x1)=$lg\frac{10{0}^{{x}_{2}}+1}{10{0}^{{x}_{1}}+1}$+(x1-x2),由于$\frac{10{0}^{{x}_{2}}+1}{10{0}^{{x}_{1}}+1}$>$\frac{1{0}^{{x}_{2}}}{1{0}^{{x}_{1}}}$,可得$lg\frac{10{0}^{{x}_{2}}+1}{10{0}^{{x}_{1}}+1}$>lg$\frac{1{0}^{{x}_{2}}}{1{0}^{{x}_{1}}}$=x2-x1,代入即可證明.0,

解答 (I)解:∵函數(shù)f(x)是偶函數(shù),∴f(-x)=f(x),
∴l(xiāng)g(100-x+1)+ax=lg(100x+1)-ax,
化為:2(a-1)x=0,對于?x∈R恒成立,
∴a=1.
解得驗證滿足條件.
∴a=1.
(II)證明:由幾何畫板畫出x≥0時函數(shù)f(x)=lg(100x+1)-x的圖象,函數(shù)f(x)是單調(diào)遞增函數(shù).
?0≤x1<x2,
則f(x2)-f(x1)=$[lg(10{0}^{{x}_{2}}+1)-{x}_{2}]$-[$lg(10{0}^{{x}_{1}}+1)$-x1]=$lg\frac{10{0}^{{x}_{2}}+1}{10{0}^{{x}_{1}}+1}$+(x1-x2),
∵$\frac{10{0}^{{x}_{2}}+1}{10{0}^{{x}_{1}}+1}$>$\frac{1{0}^{{x}_{2}}}{1{0}^{{x}_{1}}}$,
∴$lg\frac{10{0}^{{x}_{2}}+1}{10{0}^{{x}_{1}}+1}$>lg$\frac{1{0}^{{x}_{2}}}{1{0}^{{x}_{1}}}$=x2-x1,
∴f(x2)-f(x1)>x2-x1+(x1-x2)=0,
∴f(x2)>f(x1).
∴函數(shù)f(x)在[0,+∞)上是單調(diào)遞增函數(shù).

點(diǎn)評 本題考查了函數(shù)的奇偶性與單調(diào)性、對數(shù)的運(yùn)算性質(zhì)、不等式的性質(zhì)、“放縮法”,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.等比數(shù)列{an}中,a1=9,a5=4,則a3=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.對于實數(shù)a,b,c,給出下列命題:
①若a>b,則ac2>bc2;
②若0>a>b,則$\frac{1}{a}<\frac{1}$;
③若a>b,$\frac{1}{a}<\frac{1}$,則a>0,b<0;
④若a>b>c>0,則$\frac{a}{a+c}>\frac{b+c}$.其中真命題的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)直線3x-4y+5=0的傾斜角為α,則sinα=$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)全集U={1,2,3,4,5}.集合A={1,2,3},B={2,4,5},那么)(CUA)∩(CUB)是( 。
A.B.{4}C.{1,3}D.{2,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.?dāng)?shù)列{an}中,a1=2,a2=1,且$\frac{1}{a_n}+\frac{1}{{{a_{n+2}}}}=\frac{2}{{{a_{n+1}}}}$(n∈N*),則a6等于(  )
A.-3B.-$\frac{1}{3}$C.3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某商店預(yù)備在一個月內(nèi)分批購入每張價值為20元的書桌共36臺,每批都購入x臺(x是正整數(shù)),且每批均需付運(yùn)費(fèi)4元,儲存購入的書桌一個月所付的保管費(fèi)與每批購入書桌的總價值(不含運(yùn)費(fèi))成正比,若每批購入4臺,則該月需用去運(yùn)費(fèi)和保管費(fèi)共52元,現(xiàn)在全月只有48元資金可以用于支付運(yùn)費(fèi)和保管費(fèi).
(1)求該月需用去的運(yùn)費(fèi)和保管費(fèi)的總費(fèi)用f(x);
(2)能否恰當(dāng)?shù)匕才琶颗M(jìn)貨的數(shù)量,使資金夠用?寫出你的結(jié)論,并說明理由.
(3)要使該月用于支付運(yùn)費(fèi)和保管費(fèi)的資金費(fèi)用最少,每批進(jìn)貨的數(shù)量應(yīng)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.2loga(M-2N)=logaM+logaN,則$\frac{M}{N}$的值為( 。
A.$\frac{1}{4}$B.4C.1D.4或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.化簡求值:
(1)1.10+$\root{3}{512}$-0.5-2+lg25+2lg2
(2)已知2x=72y=A,且$\frac{1}{x}$+$\frac{1}{y}$=2,求A的值.

查看答案和解析>>

同步練習(xí)冊答案