在極坐標(biāo)系中,直線θ=
π
6
截圓ρ=2cos
π
6
(ρ∈R)所得的弦長是
 
考點(diǎn):簡單曲線的極坐標(biāo)方程
專題:坐標(biāo)系和參數(shù)方程
分析:把直線和圓的極坐標(biāo)方程化為直角坐標(biāo)方程分別y=
3
3
x
,由圓ρ=2cos
π
6
(ρ∈R)可得ρ2=2ρcos
π
6
,化為x2+y2=(
3
)2
=3.即可得出.
解答: 解:由直線θ=
π
6
可得直角坐標(biāo)方程:y=
3
3
x
,由圓ρ=2cos
π
6
(ρ∈R)可得ρ2=2ρcos
π
6
,化為x2+y2=(
3
)2
=3.
∵直線經(jīng)過圓心,∴所得的弦長是直徑2
3

故答案為:2
3
點(diǎn)評:本題考查了把極坐標(biāo)方程化為直角坐標(biāo)方程、弦長問題,考查了計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義運(yùn)算a*b為:a*b=
a(a≤b)
b(a>b)
,如1*2=1,則函數(shù)f(x)=2x*2-x的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平行六面體ABCD-A1B1C1D1.AC1分別與平面A1BD、平面CB1D1交于E,F(xiàn)兩點(diǎn).給出以下命題:
①平面A1BD∥平面CB1D1;
②若∠A1AD=∠A1AB=∠DAB,AD=AB=AA1,則直線A1D與CD1所成角為
π
3
;
③點(diǎn)E,F(xiàn)為線段AC1的兩個三等分點(diǎn);
④E為△A1BD的內(nèi)心.
其中真命題的序號是
 
(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P是拋物線y2=4x上的動點(diǎn),過P作拋物線準(zhǔn)線的垂線,垂足為M、N是圓(x-2)2+(y-5)2=1上的動點(diǎn),則|PM|+|PN|的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)右焦點(diǎn)F的一條直線與該雙曲線有且只有一個交點(diǎn),且交點(diǎn)的橫坐標(biāo)為2a,則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用輾轉(zhuǎn)相除法或更相減損術(shù)求得8251與6105的最大公約數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=cosx(-
π
2
≤x≤
π
2
)與x軸所圍圖形的面積為( 。
A、4B、2C、3D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=xex-a有兩個零點(diǎn),則實數(shù)a的取值范圍是( 。
A、-
1
e
<a<0
B、a>-
1
e
C、-e<a<0
D、0<a<e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項為an=2n-1(n∈N*),把數(shù)列{an}的各項排列成如圖所示的三角形數(shù)陣.記M(s,t)表示該數(shù)陣中第s行的第t個數(shù),則該數(shù)陣中的數(shù)2011對應(yīng)于( 。
A、M(45,15)
B、M(45,16)
C、M(46,15)
D、M(46,25)

查看答案和解析>>

同步練習(xí)冊答案