已知下列命題:
(1)若一直線垂直于一個平面的一條斜線,則該直線必垂直于該斜線在這個平面內(nèi)的射影;
(2)平面內(nèi)與這個平面的一條斜線垂直的直線互相平行;
(3)若平面外的兩條直線,在這個平面上的射影互相垂直,則這兩條直線互相垂直;
(4)若兩條直線互相垂直,且其中的一條平行一個平面,另一條是這個平面的斜線,則這兩條直線在這個平面上的射影互相垂直.
上述命題正確的是
 
.(填寫序號)
考點:空間中直線與平面之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:利用空間中線線、線面、面面間的位置關(guān)系和三垂線定理及三垂線定理的逆定理求解.
解答: 解:因為已知直線不一定在平面內(nèi),故不能用三垂直逆定理判斷垂直關(guān)系,故(1)錯誤;
平面內(nèi)與這個平面的一條斜線垂直的直線必定與斜線在平面內(nèi)的射影垂直,
所以它們之間也平行,故(2)正確;
根據(jù)三垂線定理可證明直線與另一直線的射影垂直,
但不能進一步說明直線和直線垂直,故(3)錯誤;
根據(jù)三垂線定理的逆定理和空間兩直線所成角的概念,
得到若兩條直線互相垂直,且其中的一條平行一個平面,
另一條是這個平面的斜線,則這兩條直線在這個平面上的射影互相垂直.故(4)正確.
故答案為:(2)(4).
點評:本題考查命題真假的判斷,是基礎(chǔ)題,解題時要認真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,兩塊直角三角板拼在一起,已知∠ABC=45°,∠BCD=60°.
(1)若記
AB
=
a
,
AC
=
b
,試用
a
,
b
表示向量
AD
,
CD

(2)若AB=
2
,求
AE
CD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)在其定義域(0,+∞)上是增函數(shù),f(2)=1,f(xy)=f(x)+f(y)
(1)求f(8)的值;
(2)解不等式f(x)+f(x-2)≤3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列1,1+2,1+2+22,…1+2+22+2n-1,…的前n項和為Sn,則S10=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將正偶數(shù)排列如圖所示,其中第i行第j個數(shù)表示aij(i∈N*).例如a32=10,若
aij=2014,則i+j=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,對于任意相鄰三點都不共線的有序整點列(整點即橫縱坐標(biāo)都是整數(shù)的點)A(n):A1,A2,A3,…,An與B(n):B1,B2,B3,…,B(n),其中n≥3,若同時滿足:①兩點列的起點和終點分別相同;②線段AiAi+1⊥BiBi+1,其中i=1,2,3,…,n-1,則稱A(n)與B(n)互為正交點列.則A(3):A1(0,2),A2(3,0)),A3(5,2)的正交點列B(3)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={(x,y)|y=f(x)},若對于任意實數(shù)(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,則稱集合M是“垂直對點集”,給出下列四個集合:
①M={(x,y)|y=-
1
x
}    ②M={(x,y)|y=x2-1}
③M={(x,y)|y=ex-2}   ④M={(x,y)|y=cosx}
其中是“垂直對點集”的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線4x2-y2=4的漸近線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若O為ABC內(nèi)部任意一點,邊AO并延長交對邊于A′,則
AO
AA′
=
S四邊形ABOC
S△ABC
,同理邊BO,CO并延長,分別交對邊于B′,C′,這樣可以推出
AO
AA′
+
BO
BB′
+
CO
CC′
=
 
;類似的,若O為四面體ABCD內(nèi)部任意一點,連AO,BO,CO,DO并延長,分別交相對面于A′,B′,C′,D′,則
AO
AA′
+
BO
BB′
+
CO
CC′
+
DO
DD′
=
 

查看答案和解析>>

同步練習(xí)冊答案