【題目】某公司決定對(duì)旗下的某商品進(jìn)行一次評(píng)估,該商品原來(lái)每件售價(jià)為25元,年銷(xiāo)售8萬(wàn)件.
(1)據(jù)市場(chǎng)調(diào)查,若價(jià)格每提高1元,銷(xiāo)售量將相應(yīng)減少2000件,要使銷(xiāo)售的總收入不低于原收入,該商品每件定價(jià)最多為多少元?
(2)為了抓住2022年冬奧會(huì)契機(jī),擴(kuò)大該商品的影響力,提高年銷(xiāo)售量.公司決定立即對(duì)該商品進(jìn)行全面技術(shù)革新和銷(xiāo)售策略改革,并提高定價(jià)到元.公司擬投入萬(wàn)作為技改費(fèi)用,投入50萬(wàn)元作為固定宣傳費(fèi)用,投入萬(wàn)元作為浮動(dòng)宣傳費(fèi)用.試問(wèn):當(dāng)該商品改革后的銷(xiāo)售量至少達(dá)到多少萬(wàn)件時(shí),才可能使改革后的銷(xiāo)售收入不低于原收入與總投入之和?并求出此時(shí)商品的每件定價(jià).
【答案】(1)40元(2)至少達(dá)到10.2萬(wàn)件時(shí)符合要求,此時(shí)每件定價(jià)為30元
【解析】
(1)設(shè)出每件的定價(jià),根據(jù)“銷(xiāo)售的總收入不低于原收入”列不等式,解不等式求得定價(jià)的取值范圍,由此求得定價(jià)的最大值.(2)利用題目所求“改革后的銷(xiāo)售收入不低于原收入與總投入之和”列出不等式,將不等式分離常數(shù),然后利用基本不等式求得的取值范圍以及此時(shí)商品的每件定價(jià).
解:(1)設(shè)每件定價(jià)為元,
依題意得,
整理得,
解得
所以要使銷(xiāo)售的總收入不低于原收入,每件定價(jià)最多為40元.
(2)依題意知當(dāng)時(shí),不等式有解
等價(jià)于時(shí),有解,
由于,
當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,
所以
當(dāng)該商品改革后銷(xiāo)售量至少達(dá)到10.2萬(wàn)件時(shí),才可能使改革后的銷(xiāo)售收入不低于原收入與總投入之和,此時(shí)該商品的每件定價(jià)為30元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角梯形中, ,等腰梯形中, ,且平面平面.
(1)求證: 平面;
(2)若與平面所成角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線過(guò)坐標(biāo)原點(diǎn),圓的方程為.
(1)當(dāng)直線的斜率為時(shí),求與圓相交所得的弦長(zhǎng);
(2)設(shè)直線與圓交于兩點(diǎn),且為的中點(diǎn),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓:的離心率為,過(guò)左焦點(diǎn)且斜率為的直線交橢圓于兩點(diǎn),線段的中點(diǎn)為,直線:交橢圓于兩點(diǎn).
(1)求橢圓的方程;
(2)求證:點(diǎn)在直線上;
(3)是否存在實(shí)數(shù),使得?若存在,求出的值,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《中華人民共和國(guó)個(gè)人所得稅法》第十四條中有下表(部分):
個(gè)人所得稅稅率(工資、薪金所得適用)
級(jí)數(shù) | 全月應(yīng)納所得額 | 稅率(%) |
1 | 不超過(guò)元的部分 | |
2 | 超過(guò)元至元的部分 | |
3 | 超過(guò)元至元的部分 | |
4 | 超過(guò)元至元的部分 | |
5 | 超過(guò)元至元的部分 |
上表中“全月應(yīng)納稅所得額”是從月工資、薪金收入中減去元后的余額.如果某人月工資、薪金收入為元,那么他應(yīng)納的個(gè)人所得稅為________元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司共有60位員工,為提高員工的業(yè)務(wù)技術(shù)水平,公司擬聘請(qǐng)專(zhuān)業(yè)培訓(xùn)機(jī)構(gòu)進(jìn)行培訓(xùn).培訓(xùn)的總費(fèi)用由兩部分組成:一部分是給每位參加員工支付400元的培訓(xùn)材料費(fèi);另一部分是給培訓(xùn)機(jī)構(gòu)繳納的培訓(xùn)費(fèi).若參加培訓(xùn)的員工人數(shù)不超過(guò)30人,則每人收取培訓(xùn)費(fèi)1000元;若參加培訓(xùn)的員工人數(shù)超過(guò)30人,則每超過(guò)1人,人均培訓(xùn)費(fèi)減少20元.設(shè)公司參加培訓(xùn)的員工人數(shù)為x人,此次培訓(xùn)的總費(fèi)用為y元.
(1)求出y與x之間的函數(shù)關(guān)系式;
(2)請(qǐng)你預(yù)算:公司此次培訓(xùn)的總費(fèi)用最多需要多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)等比數(shù)列滿(mǎn)足,,數(shù)列滿(mǎn)足.
(1)求數(shù)列,的通項(xiàng)公式;
(2)令,求數(shù)列的前項(xiàng)和;
(3)若,且對(duì)所有的正整數(shù)都有成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)家門(mén)前有一筆直公路直通長(zhǎng)城,星期天,他騎自行車(chē)勻速前往旅游,他先前進(jìn)了,覺(jué)得有點(diǎn)累,就休息了一段時(shí)間,想想路途遙遠(yuǎn),有些泄氣,就沿原路返回騎了, 當(dāng)他記起詩(shī)句“不到長(zhǎng)城非好漢”,便調(diào)轉(zhuǎn)車(chē)頭繼續(xù)前進(jìn). 則該同學(xué)離起點(diǎn)的距離與時(shí)間的函數(shù)關(guān)系的圖象大致為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為 (為參數(shù)),在以為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,曲線的方程為.
(1)求直線和曲線的直角坐標(biāo)方程;
(2)已知點(diǎn),設(shè)直線與曲線的兩個(gè)交點(diǎn)為, ,若,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com