8.在△ABC中,若c2>a2+b2,則△ABC必是鈍角(填銳角,鈍角,直角)三角形.

分析 由條件利用余弦定理求得cosC<0,可得△ABC必是鈍角三角形.

解答 解:△ABC中,若c2>a2+b2,則由余弦定理可得cosC=$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$<0,
故C為鈍角,故△ABC必是鈍角三角形,
故答案為:鈍角.

點(diǎn)評(píng) 本題主要考查余弦定理的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.一動(dòng)圓P過定點(diǎn)M(-4,0),且與已知圓N:(x-4)2+y2=16相切,則動(dòng)圓圓心P的軌跡方程是(  )
A.$\frac{x^2}{4}-\frac{y^2}{12}=1(x≥2)$B.$\frac{x^2}{4}-\frac{y^2}{12}=1(x≤2)$C.$\frac{x^2}{4}-\frac{y^2}{12}=1$D.$\frac{y^2}{4}-\frac{x^2}{12}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若$B+C=\frac{2π}{3}$,$a=\sqrt{2}$,則b2+c2的取值范圍是( 。
A.(3,6)B.(3,6]C.(2,4)D.(2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.f(x)=loga$\frac{1-mx}{1-x}$為奇函數(shù)(a>1)
(1)求實(shí)數(shù)m的值;
(2)解不等式f(x-$\frac{1}{2}$)+f($\frac{1}{4}$-x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知Sn為公差不為0的等差數(shù)列{an}的前n項(xiàng)和,且a1=1,S1,S2,S4成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下列四組函數(shù),表示同一函數(shù)的是( 。
A.$f(x)=\sqrt{x^2}$,g(x)=xB.f(x)=x,$g(x)=\frac{x^2}{x}$C.f(x)=x,$g(x)=\root{3}{x^3}$D.f(x)=lnx2,g(x)=2lnx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知i是虛數(shù)單位,則$\frac{3-i}{1+i}$的模與虛部的積等于( 。
A.$2\sqrt{5}i$B.$-2\sqrt{5}i$C.$2\sqrt{5}$D.$-2\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)a=sin$\frac{24π}{5}$,b=cos(-$\frac{39π}{10}$),c=tan(-$\frac{43π}{12}$),則( 。
A.a>b>cB.b>c>aC.c>b>aD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)=3|x-1|,則函數(shù)f(x)的單調(diào)遞減區(qū)間是( 。
A.(-∞,-1)B.(-∞,1)C.(-1,+∞)D.(1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案