【題目】已知函數(shù),若在區(qū)間內(nèi)有且只有一個(gè)實(shí)數(shù),使得成立,則稱函數(shù)在區(qū)間內(nèi)具有唯一零點(diǎn).
(1)判斷函數(shù)在區(qū)間內(nèi)是否具有唯一零點(diǎn),說明理由:
(2)已知向量,,,證明在區(qū)間內(nèi)具有唯一零點(diǎn).
(3)若函數(shù)在區(qū)間內(nèi)具有唯一零點(diǎn),求實(shí)數(shù)的取值范圍.
【答案】(1)是,詳見解析(2)證明見解析(3)
【解析】
(1)利用分段函數(shù),分類討論函數(shù)的單調(diào)性,從而得出結(jié)論;
(2)兩個(gè)向量的數(shù)量積共公式以及三角恒等變換,化簡(jiǎn)的解析式,再利用正弦函數(shù)的性質(zhì)得出結(jié)論;
(3)利用二次函數(shù)的性質(zhì),分類討論,求得的范圍.
(1)函數(shù)在區(qū)間內(nèi)具有唯一零點(diǎn),理由如下:
當(dāng)時(shí),有,且當(dāng)時(shí),有;
當(dāng)時(shí),是增函數(shù),有,
故函數(shù)在區(qū)間內(nèi)具有唯一零點(diǎn).
(2)由向量,,,
所以,,
令,,解得,
所以函數(shù)在區(qū)間內(nèi)具有唯一零點(diǎn),使得,
故函數(shù)在區(qū)間內(nèi)具有唯一零點(diǎn).
(3)由函數(shù)在區(qū)間內(nèi)具有唯一零點(diǎn),該二次函數(shù)的對(duì)稱軸為,
①當(dāng),即時(shí),函數(shù)在區(qū)間是增函數(shù),
只需,即,解得,
所以實(shí)數(shù)的取值范圍為.
②當(dāng),即時(shí),若使函數(shù)在區(qū)間內(nèi)具有零點(diǎn),
則,解得或,
所以,,
i當(dāng)時(shí),函數(shù)在區(qū)間內(nèi)具有唯一零點(diǎn),即,符合題意,
ii當(dāng)時(shí),若使函數(shù)在區(qū)間內(nèi)具有唯一零點(diǎn),只需,
即,解得,
所以實(shí)數(shù)的取值范圍為或.
③當(dāng),即時(shí),函數(shù)在區(qū)間是減函數(shù),
當(dāng)時(shí),只需,即,解得,
當(dāng)時(shí),令,解得,
所以函數(shù)在區(qū)間上具有唯一零點(diǎn),符合題意,
所以實(shí)數(shù)的取值范圍為.
綜上所述:實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】所謂聲強(qiáng),是指聲音在傳播途徑上每1平方米面積上的聲能流密度,用I表示,人類能聽到的聲強(qiáng)范圍很廣,其中能聽見的1000Hz聲音的聲強(qiáng)(約10﹣12W/m2)為標(biāo)準(zhǔn)聲強(qiáng),記作I0,聲強(qiáng)I與標(biāo)準(zhǔn)聲強(qiáng)I0之比的常用對(duì)數(shù)稱作聲強(qiáng)的聲強(qiáng)級(jí),記作L,即L=lg,聲強(qiáng)級(jí)L的單位名稱為貝(爾),符號(hào)為B,取貝(爾)的十分之一作為響度的常用單位,稱為分貝(爾).簡(jiǎn)稱分貝(dB).《三國演義》中有張飛喝斷當(dāng)陽橋的故事,設(shè)張飛大喝一聲的響度為140dB.一個(gè)士兵大喝一聲的響度為90dB,如果一群士兵同時(shí)大喝一聲相當(dāng)一張飛大喝一聲的響度,那么這群土兵的人數(shù)為( 。
A.1萬B.2萬C.5萬D.10萬
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足:,,且.
(1)求數(shù)列前20項(xiàng)的和;
(2)求通項(xiàng)公式;
(3)設(shè)的前項(xiàng)和為,問:是否存在正整數(shù)、,使得?若存在,請(qǐng)求出所有符合條件的正整數(shù)對(duì),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為,短軸兩個(gè)端點(diǎn)為,且四邊形是邊長(zhǎng)為2的正方形.
(1)求橢圓的方程;
(2)設(shè)是橢圓上一點(diǎn),為橢圓長(zhǎng)軸上一點(diǎn),求的最大值與最小值;
(3)設(shè)是橢圓外的動(dòng)點(diǎn),滿足,點(diǎn)是線段與該橢圓的交點(diǎn),點(diǎn)在線段上,并且滿足,,求點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,小凳凳面為圓形,凳腳為三根細(xì)鋼管.考慮到鋼管的受力等因素,設(shè)計(jì)的小凳應(yīng)滿足:三根細(xì)鋼管相交處的節(jié)點(diǎn)與凳面圓形的圓心的連線垂直于凳面和地面,且分細(xì)鋼管上下兩段的比值為,三只凳腳與地面所成的角均為.若、、是凳面圓周的三等分點(diǎn),厘米,求凳子的高度及三根細(xì)鋼管的總長(zhǎng)度(精確到).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的通項(xiàng)公式為,其中,、.
(1)試寫出一組、的值,使得數(shù)列中的各項(xiàng)均為正數(shù).
(2)若,,數(shù)列滿足,且對(duì)任意的(),均有,寫出所有滿足條件的的值.
(3)若,數(shù)列滿足,其前項(xiàng)和為,且使(、,)的和有且僅有組,、、…、中有至少個(gè)連續(xù)項(xiàng)的值相等,其它項(xiàng)的值均不相等,求、的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B是海岸線OM、ON上兩個(gè)碼頭,海中小島有碼頭Q到海岸線OM、ON的距離分別為、,測(cè)得,,以點(diǎn)O為坐標(biāo)原點(diǎn),射線OM為x軸的正半軸,建立如圖所示的直角坐標(biāo)系,一艘游輪以小時(shí)的平均速度在水上旅游線AB航行(將航線AB看作直線,碼頭Q在第一象限,航線BB經(jīng)過點(diǎn)Q).
(1)問游輪自碼頭A沿方向開往碼頭B共需多少分鐘?
(2)海中有一處景點(diǎn)P(設(shè)點(diǎn)P在平面內(nèi),,且),游輪無法靠近,求游輪在水上旅游線AB航行時(shí)離景點(diǎn)P最近的點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知無窮數(shù)列的前項(xiàng)和為,且滿足,其中、、是常數(shù).
(1)若,,,求數(shù)列的通項(xiàng)公式;
(2)若,,,且,求數(shù)列的前項(xiàng)和;
(3)試探究、、滿足什么條件時(shí),數(shù)列是公比不為的等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】福彩是利國利民游戲,其刮刮樂之《藍(lán)色奇跡》:如圖(1)示例,刮開票面看到最左側(cè)一列四個(gè)兩位數(shù)字為“我的號(hào)碼”,最上行四個(gè)兩位數(shù)為“中獎(jiǎng)號(hào)碼”,這八個(gè)兩位數(shù)是00至99這一百個(gè)數(shù)字隨機(jī)產(chǎn)生的,若兩個(gè)數(shù)字相同即中得其相交線上的獎(jiǎng)金,獎(jiǎng)金可以累加.小明買的一張《藍(lán)色奇跡》刮刮樂如圖(2),除了一個(gè)“我的號(hào)碼”外,他已經(jīng)刮開票面上其它所有數(shù)字,依據(jù)目前的信息,小明從這張刮刮樂得到的獎(jiǎng)金額高于600元的概率為(無所得稅)( )
圖(1) 圖(2)
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com