【題目】如圖,A、B是海岸線OM、ON上兩個碼頭,海中小島有碼頭Q到海岸線OM、ON的距離分別為、,測得,,以點(diǎn)O為坐標(biāo)原點(diǎn),射線OM為x軸的正半軸,建立如圖所示的直角坐標(biāo)系,一艘游輪以小時的平均速度在水上旅游線AB航行(將航線AB看作直線,碼頭Q在第一象限,航線BB經(jīng)過點(diǎn)Q).
(1)問游輪自碼頭A沿方向開往碼頭B共需多少分鐘?
(2)海中有一處景點(diǎn)P(設(shè)點(diǎn)P在平面內(nèi),,且),游輪無法靠近,求游輪在水上旅游線AB航行時離景點(diǎn)P最近的點(diǎn)C的坐標(biāo).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程;
(2)射線與曲線分別交于兩點(diǎn)(異于原點(diǎn)),定點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)討論的單調(diào)性;
(Ⅱ)當(dāng)時,令,其導(dǎo)函數(shù)為,設(shè)是函數(shù)的兩個零點(diǎn),判斷是否為的零點(diǎn)?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若在區(qū)間內(nèi)有且只有一個實(shí)數(shù),使得成立,則稱函數(shù)在區(qū)間內(nèi)具有唯一零點(diǎn).
(1)判斷函數(shù)在區(qū)間內(nèi)是否具有唯一零點(diǎn),說明理由:
(2)已知向量,,,證明在區(qū)間內(nèi)具有唯一零點(diǎn).
(3)若函數(shù)在區(qū)間內(nèi)具有唯一零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的定義域?yàn)?/span>,如果存在非零常數(shù),對于任意,都有,則稱函數(shù)是“似周期函數(shù)”,非零常數(shù)為函數(shù)的“似周期”.現(xiàn)有下面四個關(guān)于“似周期函數(shù)”的命題:
①如果“似周期函數(shù)”的“似周期”為-1,那么它是周期為2的周期函數(shù);
②函數(shù)是“似周期函數(shù)”;
③函數(shù)是“似周期函數(shù)”;
④如果函數(shù)是“似周期函數(shù)”,那么“”.
其中是真命題的序號是 .(寫出所有滿足條件的命題序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 是邊長為的正方形,平面平面, , , , .
(1)求證:面面;
(2)求直線與平面所成角的正弦值;
(3)在線段上是否存在點(diǎn),使得二面角的大小為?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是數(shù)列的前項(xiàng)和,對任意都有成立(其中是常數(shù)).
(1)當(dāng)時,求:
(2)當(dāng)時,
①若,求數(shù)列的通項(xiàng)公式:
②設(shè)數(shù)列中任意(不同)兩項(xiàng)之和仍是該數(shù)列中的一項(xiàng),則稱該數(shù)列是“數(shù)列”,如果,試問:是否存在數(shù)列為“數(shù)列”,使得對任意,都有,且,若存在,求數(shù)列的首項(xiàng)的所有取值構(gòu)成的集合;若不存在.說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的參數(shù)方程為(t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,過極點(diǎn)的兩直線l1,l2相互垂直,與曲線C分別相交于A,B兩點(diǎn)(不同于點(diǎn)O),且l1的傾斜角為.
(1)求曲線C的極坐標(biāo)方程和直線l2的直角坐標(biāo)方程;
(2)求△OAB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若兩個函數(shù)的圖象經(jīng)過若干次平移后能夠重合,則稱這兩個函數(shù)為“同形”函數(shù),給出下列四個函數(shù):,,,,則“同形”函數(shù)是( )
A.與B.與C.與D.與
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com