7.A國現(xiàn)有人口3500萬,年糧食產(chǎn)量800萬噸,根據(jù)歷年的資料統(tǒng)計(jì),A國人口的平均年增長率為2%,每人平均每年消耗糧食200千克,假定他們國家既不出口糧食,也不進(jìn)口糧食.預(yù)測多少年后,A國會(huì)出現(xiàn)糧食短缺的惰況?

分析 設(shè)x年后,A國會(huì)出現(xiàn)糧食短缺的惰況,則3500(1+2%)x×$\frac{200}{1000}$>800,解得答案.

解答 解:設(shè)x年后,A國會(huì)出現(xiàn)糧食短缺的惰況,
則3500(1+2%)x×$\frac{200}{1000}$>800,
解得:x>${log}_{1.02}\frac{8}{7}$≈6.74,
故7年后,A國會(huì)出現(xiàn)糧食短缺的惰況.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)模型的選擇與應(yīng)用,指數(shù)不等式的解法,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.橢圓$\frac{{x}^{2}}{4}$+y2=1的長軸長為( 。
A.4B.2C.1D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)a是實(shí)數(shù),g(x)是指數(shù)函數(shù),且g(x)的圖象過點(diǎn)(2,4),若f(x)=a-$\frac{2}{g(x)+1}$(x∈R).
(1)試證明:對(duì)于任意的a,f(x)在R上為增函數(shù);
(2)試確定a的值,使f(x)為奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知2x≤256,且log2x≥$\frac{1}{2}$.
(1)求x的取值范圍;
(2)求函數(shù)f(x)=log2($\frac{x}{2}$)•log2($\frac{x}{4}$)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在正方體ABCD-A1B1C1D1中,作截面EFGH(如圖所示)交C1D1,A1B1,AB,CD分別于點(diǎn)E,F(xiàn),G,H,則四邊形EFGH的形狀是( 。
A.平行四邊形B.菱形C.矩形D.梯形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖,A1,A2,A3,…An分別是拋物線y=x2上的點(diǎn),A1B1垂直與x軸,A1C1垂直于y軸,線段B1C1交拋物線與A2,再作A2B2⊥x軸,A2C2⊥y軸,線段B2C2交拋物線于A3,這樣下去,分別可以得到A4,A5,…,An,其中A1的坐標(biāo)為(1,1),則S${\;}_{矩形{A}_{n}{B}_{n}O{C}_{n}}$=($\frac{\sqrt{5}-1}{2}$)3n-3..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知a,b,c分別是△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊,若△ABC的面積S=$\frac{{a}^{2}+^{2}-{c}^{2}}{4}$,則角C的大小是( 。
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在正六棱柱ABCDEF-A1B1C1D1E1F1中,用$\overrightarrow{AB}$,$\overrightarrow{AF}$,$\overrightarrow{A{A}_{1}}$表示向量$\overrightarrow{A{D}_{1}}$,其結(jié)果為$\overrightarrow{A{D}_{1}}$=$\overrightarrow{A{A}_{1}}$+2($\overrightarrow{AB}$+$\overrightarrow{AF}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,平面ABC∩平面FBC,其中GH∥DE,求證:GH∥BC.

查看答案和解析>>

同步練習(xí)冊(cè)答案