設(shè)函數(shù)g(x)=2(x2+ax)sin
πx
2
(x∈[0,2],a≥-2)的值域?yàn)閇-2,0],則實(shí)數(shù)a的值為
 
考點(diǎn):三角函數(shù)的最值
專題:三角函數(shù)的圖像與性質(zhì),不等式的解法及應(yīng)用
分析:根據(jù)sin
πx
2
的取值范圍,將-2≤g(x)≤0,化簡
-2
sin
πx
2
≤2(x2+ax)≤0
.即-
1
xsin
πx
2
-x≤a≤-x
.再利用x∈[0,2],即可求得a=-2.
解答: 解:∵g(x)=2(x2+ax)sin
πx
2
,
∴當(dāng)x=0或x=2時,g(x)=0.
∵當(dāng)0<x<2時,0<sin
πx
2
≤1.
∴-2≤g(x)≤0,可化簡為
-2
sin
πx
2
≤2(x2+ax)≤0

-
1
xsin
πx
2
-x≤a≤-x

又∵x∈[0,2],
∴-x≥-2.
∴a≤-2.
又∵a≥-2,
∴a=-2.
故答案為:-2.
點(diǎn)評:本題考查三角函數(shù)的性質(zhì)及最值,不等式的解法及應(yīng)用等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

從旅游景點(diǎn)A到B有一條100公里的水路,某輪船公司開設(shè)一個觀光項(xiàng)目,已知游輪每小時使用的燃料費(fèi)用與速度的立方成正比例,其他費(fèi)用為每小時3240元,游輪最大時速為50km/h,當(dāng)游輪速度為10km/h,燃料費(fèi)用為每小時60元,若單程票價定為150元/人.
(1)一艘游輪單程以40km/h航行,所載游客為180人,輪船公司獲得的利潤是多少?
(2)如果輪船公司要獲取最大利潤,游輪的速度為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)滿足f(x+2)•f(x)=-1,f(x)關(guān)于點(diǎn)(1,0)中心對稱,關(guān)于直線x=a軸對稱,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題P:對?x≥0,都有x3-1≥0,則¬p是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

焦點(diǎn)在y軸上,漸近線方程為y=±2x的雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,sin2C=
3
sinAsinB+sin2B,a=2
3
b,則角C=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在長方體ABCD-A1B1C1D1中,E,H分別是棱A1B1,D1C1上的點(diǎn)(點(diǎn)E與B1不重合),且EH∥A1D1,過EH的平面與棱BB1,CC1相交,交點(diǎn)分別為F,G.設(shè)AB=2AA1=2a,EF=a,B1E=2B1F.在長方體ABCD-A1B1C1D1內(nèi)隨機(jī)選取一點(diǎn),則該點(diǎn)取自于幾何體A1ABFE-D1DCGH內(nèi)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=
π
0
(sinx+cosx)dx,則二項(xiàng)式(a
x
-
1
x
)6
的展開式的常數(shù)項(xiàng)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于統(tǒng)計(jì)數(shù)據(jù)的分析,有以下幾個結(jié)論,其中正確的個數(shù)為( 。
①利用殘差進(jìn)行回歸分析時,若殘差點(diǎn)比較均勻地落在寬度較窄的水平帶狀區(qū)域內(nèi),則說明線性回歸模型的擬合精度較高;
②將一組數(shù)據(jù)中的每個數(shù)據(jù)都減去同一個數(shù)后,期望與方差均沒有變化;
③調(diào)查劇院中觀眾觀后感時,從50排(每排人數(shù)相同)中任意抽取一排的人進(jìn)行調(diào)查是分層抽樣法;
④已知隨機(jī)變量X服從正態(tài)分布N(3,1),且P(2≤X≤4)=0.682 6,則P(X>4)等于0.158 7
⑤某單位有職工750人,其中青年職工350人,中年職工250人,老年職工150人.為了了解該單位職工的健康情況,用分層抽樣的方法從中抽取樣本.若樣本中的青年職工為7人,則樣本容量為15人.
A、2B、3C、4D、5

查看答案和解析>>

同步練習(xí)冊答案