【題目】已知函數(shù).
(1)若函數(shù)存在不小于的極小值,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),若對(duì),不等式恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1);(2).
【解析】
(1)利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,求出函數(shù)的極值,然后令極值大于等于,解出不等式可得出實(shí)數(shù)的取值范圍;
(2)構(gòu)造函數(shù),問(wèn)題等價(jià)于,對(duì)實(shí)數(shù)進(jìn)行分類討論,分析函數(shù)在區(qū)間上的單調(diào)性,結(jié)合條件可得出實(shí)數(shù)的取值范圍.
(1)函數(shù)的定義域?yàn)?/span>,.
當(dāng)時(shí),,函數(shù)在區(qū)間上單調(diào)遞減,
此時(shí),函數(shù)無(wú)極值;
當(dāng)時(shí),令,得,
又當(dāng)時(shí),;當(dāng)時(shí),.
所以,函數(shù)在時(shí)取得極小值,且極小值為.
令,即,得.
綜上所述,實(shí)數(shù)的取值范圍為;
(2)當(dāng)時(shí),問(wèn)題等價(jià)于,
記,
由(1)知,在區(qū)間上單調(diào)遞減,
所以在區(qū)間上單調(diào)遞增,所以,
①當(dāng)時(shí),由可知,所以成立;
②當(dāng)時(shí),的導(dǎo)函數(shù)為恒成立,所以在區(qū)間上單調(diào)遞增,
所以.
所以,函數(shù)在區(qū)間上單調(diào)遞增,從而,命題成立.
③當(dāng)時(shí),顯然在區(qū)間上單調(diào)遞增,
記,則,當(dāng)時(shí),,
所以,函數(shù)在區(qū)間上為增函數(shù),即當(dāng)時(shí),.
,,
所以在區(qū)間內(nèi),存在唯一的,使得,
且當(dāng)時(shí),,即當(dāng)時(shí),,不符合題意,舍去.
綜上所述,實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一圓經(jīng)過(guò)點(diǎn),,且它的圓心在直線上.
(I)求此圓的方程;
(II)若點(diǎn)為所求圓上任意一點(diǎn),且點(diǎn),求線段的中點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形為等腰梯形, , 沿對(duì)角線將旋轉(zhuǎn),使得點(diǎn)至點(diǎn)的位置,此時(shí)滿足.
(1)判斷的形狀,并證明;
(2)求二面角的平面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某研究機(jī)構(gòu)為了了解各年齡層對(duì)高考改革方案的關(guān)注程度,隨機(jī)選取了200名年齡在內(nèi)的市民進(jìn)行了調(diào)查,并將結(jié)果繪制成如圖所示的頻率分布直方圖(分第一~五組區(qū)間分別為,,,,,).
(1)求選取的市民年齡在內(nèi)的人數(shù);
(2)若從第3,4組用分層抽樣的方法選取5名市民進(jìn)行座談,再?gòu)闹羞x取2人在座談會(huì)中作重點(diǎn)發(fā)言,求作重點(diǎn)發(fā)言的市民中至少有一人的年齡在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】天氣預(yù)報(bào)說(shuō),在今后的三天中,每天下雨的概率都為.現(xiàn)采用隨機(jī)模擬試驗(yàn)的方法估計(jì)這三天中恰有兩天下雨的概率:用表示下雨,從下列隨機(jī)數(shù)表的第行第列的開(kāi)始讀取,直到讀取了組數(shù)據(jù),
18 18 07 92 45 44 17 16 58 09 79 83 86 19 62 06 76 50 03 10
55 23 64 05 05 26 62 38 97 75 34 16 07 44 99 83 11 46 32 24
據(jù)此估計(jì),這三天中恰有兩天下雨的概率近似為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在統(tǒng)計(jì)學(xué)中,偏差是指?jìng)(gè)別測(cè)定值與測(cè)定的平均值之差,在成績(jī)統(tǒng)計(jì)中,我們把某個(gè)同學(xué)的某刻考試成績(jī)與該科班平均分的差叫某科偏差,班主任為了了解個(gè)別學(xué)生的偏科情況,對(duì)學(xué)生數(shù)學(xué)偏差(單位:分)與物理偏差(單位:分)之間的關(guān)系進(jìn)行偏差分析,決定從全班40位同學(xué)中隨機(jī)抽取一個(gè)容量為8的樣本進(jìn)行分析,得到他們的兩科成績(jī)偏差數(shù)據(jù)如表:
(1)已知與之間具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;
(2)若這次考試該班數(shù)學(xué)平均分為120分,物理平均分為92,試預(yù)測(cè)數(shù)學(xué)成績(jī)126分的同學(xué)的物理成績(jī).
參考公式: ,
參考數(shù)據(jù): ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C、D是以AB為直徑的圓上兩點(diǎn),AB=2AD=2,AC=BC,F 是AB上一點(diǎn),且AF=AB,將圓沿直徑AB折起,使點(diǎn)C在平面ABD的射影E在BD上,已知CE=.
(1)求證:AD⊥平面BCE;
(2)求證:AD∥平面CEF;
(3)求三棱錐A﹣CFD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】寫(xiě)出下列命題的否定,并判斷所得命題的真假:
(1)二次函數(shù)的圖像的頂點(diǎn)坐標(biāo)是;
(2)正數(shù)的立方根都是正數(shù);
(3)存在一個(gè)最大的內(nèi)角小于60°的三角形;
(4)對(duì)任意實(shí)數(shù)t,點(diǎn)都在一次函數(shù)的圖像上.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com