【題目】下面選項(xiàng)中錯(cuò)誤的有( )
A.命題“若,則”的否命題為:“若,則”
B.“”是“”的充分不必要條件
C.命題“,使得”的否定是“,均有”
D.命題“若,則”的逆否命題為真命題
【答案】ABC
【解析】
根據(jù)原命題與它的否命題的關(guān)系判斷;
根據(jù)充分與必要條件的定義判斷;
根據(jù)特稱量詞命題的否定是全稱命題判斷;
根據(jù)互為逆否命題的兩個(gè)命題同真假可判斷;
解:對(duì)于,命題“若,則”的否命題為:“若,則”
錯(cuò)誤;
對(duì)于,由“”是得不到“”,即“”是“”不充分條件,
由 “”可知“”,即“”是“”必要條件,故“”是“”必要不充分條件,錯(cuò)誤;
對(duì)于,命題“,使得”的否定是“,使得”, 錯(cuò)誤;
對(duì)于,命題“若,則”為真命題,根據(jù)互為逆否命題的兩個(gè)命題同真假,可知,命題“若,則”的逆否命題為真命題,正確;
故選:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄AM經(jīng)過(guò)點(diǎn)F(1,0),且與直線l:x=﹣1相切,動(dòng)圓圓心M的軌跡記為曲線C
(1)求曲線C的軌跡方程
(2)若點(diǎn)P在y軸左側(cè)(不含y軸)一點(diǎn),曲線C上存在不同的兩點(diǎn)A、B,滿足PA,PB的中點(diǎn)都在曲線C上,設(shè)AB中點(diǎn)為E,證明:PE垂直于y軸.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2018·湖南師大附中摸底)已知直線l經(jīng)過(guò)點(diǎn)P(-4,-3),且被圓(x+1)2+(y+2)2=25截得的弦長(zhǎng)為8,則直線l的方程是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),點(diǎn)P是圓C:上的任意一點(diǎn),線段PQ的垂直平分線與直線CP交于點(diǎn)M.
求點(diǎn)M的軌跡方程;
過(guò)點(diǎn)作直線與點(diǎn)M的軌跡交于點(diǎn)E,過(guò)點(diǎn)作直線與點(diǎn)M的軌跡交于點(diǎn)F不重合,且直線AE和直線BF的斜率互為相反數(shù),直線EF的斜率是否為定值,若為定值,求出直線EF的斜率;若不是定值,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四邊形ABCD中,AC=CD=AB=1, ,sin∠BCD=.
(1)求BC邊的長(zhǎng);
(2)求四邊形ABCD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(題文)如圖,長(zhǎng)方形材料中,已知,.點(diǎn)為材料內(nèi)部一點(diǎn),于,于,且,. 現(xiàn)要在長(zhǎng)方形材料中裁剪出四邊形材料,滿足,點(diǎn)、分別在邊,上.
(1)設(shè),試將四邊形材料的面積表示為的函數(shù),并指明的取值范圍;
(2)試確定點(diǎn)在上的位置,使得四邊形材料的面積最小,并求出其最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓E:,直線l不過(guò)原點(diǎn)O且不平行于坐標(biāo)軸,l與E有兩個(gè)交點(diǎn)A,B,線段AB的中點(diǎn)為M.
若,點(diǎn)K在橢圓E上,、分別為橢圓的兩個(gè)焦點(diǎn),求的范圍;
證明:直線OM的斜率與l的斜率的乘積為定值;
若l過(guò)點(diǎn),射線OM與橢圓E交于點(diǎn)P,四邊形OAPB能否為平行四邊形?若能,求此時(shí)直線l斜率;若不能,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)政府為了解決農(nóng)村教師的住房問(wèn)題,計(jì)劃征用一塊土地蓋一幢建筑總面積為10000公寓樓(每層的建筑面積相同).已知士地的征用費(fèi)為,土地的征用面積為第一層的倍,經(jīng)工程技術(shù)人員核算,第一層建筑費(fèi)用為,以后每增高一層,其建筑費(fèi)用就增加,設(shè)這幢公寓樓高層數(shù)為n,總費(fèi)用為萬(wàn)元.(總費(fèi)用為建筑費(fèi)用和征地費(fèi)用之和)
(1)若總費(fèi)用不超過(guò)835萬(wàn)元,求這幢公寓樓最高有多少層數(shù)?
(2)試設(shè)計(jì)這幢公寓的樓層數(shù),使總費(fèi)用最少,并求出最少費(fèi)用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若在區(qū)間上不是單調(diào)函數(shù),求實(shí)數(shù)的范圍;
(2)若對(duì)任意,都有恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),設(shè),對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn),,使得是以(為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,而且此三角形斜邊中點(diǎn)在軸上?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com