2.已知函數(shù)$f(x)=\left\{\begin{array}{l}{log_2}(x+1),x>0\\{({x-1})^2},x≤0.\end{array}\right.$則f(1)=1.

分析 直接利用分段函數(shù)求解函數(shù)值即可.

解答 解:函數(shù)$f(x)=\left\{\begin{array}{l}{log_2}(x+1),x>0\\{({x-1})^2},x≤0.\end{array}\right.$,
則f(1)=log2(1+1)=1.
故答案為:1.

點(diǎn)評(píng) 本題考查分段函數(shù)的應(yīng)用,函數(shù)值的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.“$\frac{ln3-5}{3}$≤k≤$\frac{ln2-1}{2}$”是“關(guān)于x的不等式lnx+x+1>x2+kx有且僅有2個(gè)正整數(shù)解”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,E是CC1的中點(diǎn),F(xiàn)是CE的中點(diǎn),F(xiàn)是CE的中點(diǎn).
(1)求證:AE∥平面BDF;
(2)求證:A1C⊥平面BDF;
(3)求三棱錐F-A1BD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若函數(shù)f(x)=(1-2a)x在R上是減函數(shù),則實(shí)數(shù)a的取值范圍是(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下列函數(shù)是冪函數(shù)的是(  )
A.$y=2{x^{\frac{1}{2}}}$B.y=x3+xC.y=2xD.$y={x^{\frac{1}{2}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.求值:$(1){e^{ln2}}+lg\frac{1}{100}+{(\sqrt{2014}-2015)^{lg1}}$;
$(2)-{(\frac{8}{27})^{-\frac{2}{3}}}×{(-8)^{\frac{2}{3}}}+|-100{|^{\sqrt{0.25}}}+\root{4}{{{{(3-π)}^4}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知△ABC的周長(zhǎng)為20,且頂點(diǎn)B(-4,0),C(4,0),則頂點(diǎn)A的軌跡方程是(  )
A.$\frac{x^2}{36}+\frac{y^2}{20}$=1(y≠0)B.$\frac{x^2}{20}+\frac{y^2}{36}$=1(y≠0)
C.$\frac{x^2}{6}+\frac{y^2}{20}$=1(y≠0)D.$\frac{x^2}{20}+\frac{y^2}{6}$=1(y≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若函數(shù)f(x)為定義在R上的奇函數(shù),且在(-∞,0)內(nèi)是增函數(shù),又f(2)=0,則不等式xf(x-1)<0的解集為(1,3)∪(-1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.設(shè)F1、F2分別是橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點(diǎn),過(guò)原點(diǎn)的直線(xiàn)交橢圓于A、B兩點(diǎn),AF2⊥BF2,|AF2|=6,|BF2|=8,則橢圓C的方程為$\frac{{x}^{2}}{49}+\frac{{y}^{2}}{24}$=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案