7.已知集合A={x|x2-3x<0,x∈Z},B={0,a},若A∩B≠∅,則實數(shù)a等于( 。
A.1B.2C.1或2D.1或2或3

分析 求出A中不等式的整數(shù)解確定出A,根據(jù)A與B的交集不為空集,求出a的值即可.

解答 解:由A中不等式解得:0<x<3,x∈Z,即A={1,2},
∵B={0,a},且A∩B≠∅,
∴a=1或2,
故選:C.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.一種衛(wèi)星接收天線的軸截面如圖所示,衛(wèi)星波束呈近似平行狀態(tài)射入軸截面為拋物線的接收天線,經(jīng)反射聚集到焦點處,已知接收天線的口徑(直徑)為4.8m,深度為0.5m.
(1)試建立適當(dāng)?shù)淖鴺?biāo)系,求拋物線的標(biāo)準(zhǔn)方程和焦點坐標(biāo).
(2)為了增強衛(wèi)星波束的接收,擬將接收天線的口徑增大為5.2m,求此時星波束反射聚集點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列函數(shù)在(0,+∞)上是增函數(shù)的是( 。
A.y=9-x2B.y=|x-1|C.y=($\frac{1}{2}$)xD.y=x${\;}^{\frac{1}{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)數(shù)列{an}滿足a1+$\frac{{a}_{2}}{2}$+$\frac{{a}_{3}}{3}$+…+$\frac{{a}_{n}}{n}$=1-$\frac{1}{{2}^{n}}$,則an=( 。
A.1-$\frac{1}{{2}^{n}}$B.$\frac{1}{{2}^{n-3}}$C.$\frac{1}{{2}^{n}}$D.$\frac{n}{{2}^{n}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若銳角α,β滿足(1+$\sqrt{3}$tanα)(1+$\sqrt{3}$tanβ)=4,則α+β=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.一個三角形的外接圓半徑R=$\frac{a\sqrt{bc}}{b+c}$,則該三角形的最大內(nèi)角為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow$=(cosx-$\sqrt{3}$sinx,2cos(x-$\frac{π}{6}$)),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$
(1)求f(x)的最小正周期;
(2)當(dāng)x∈[0,$\frac{π}{2}$]時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)f(x)=$\sqrt{3}$(sin2x-cos2x)+2sinxcosx的最小正周期為π,單調(diào)遞增區(qū)間為[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知數(shù)列{an}中a1=2,a2=1,an+2=$\left\{\begin{array}{l}{\frac{2{a}_{n+1}}{{a}_{n}},{a}_{n+1}≥2}\\{\frac{4}{{a}_{n}},{a}_{n+1}<2}\end{array}\right.$(n∈N*),Sn是數(shù)列{an}的前n項和,則S2015=5239.

查看答案和解析>>

同步練習(xí)冊答案