對任意實(shí)數(shù)a,b定義運(yùn)算“?”:a?b=
b,a-b≥1
a,a-b<1
,設(shè)f(x)=(x2-1)?(4+x),若函數(shù)y=f(x)+k的圖象與x軸恰有三個不同交點(diǎn),則k的取值范圍是(  )
A、(-2,1)
B、[0,1]
C、[-2,0)
D、[-2,1)
考點(diǎn):根的存在性及根的個數(shù)判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:化簡函數(shù)f(x)的解析式,作出函數(shù)y=f(x)的圖象,由題意可得,函數(shù)y=f(x)與y=-k的圖象有3個交點(diǎn),結(jié)合圖象求得結(jié)果..
解答: 解:當(dāng)(x2-1)-(x+4)<1時,f(x)=x2-1,(-2<x<3),
當(dāng)(x2-1)-(x+4)≥1時,f(x)=x+4,(x≥3或x≤-2),
函數(shù)y=f(x)=
x2-1,(-2<x<3)
x+4,(x≤-2,或x≥3)
的圖象如圖所示:


由圖象得:-2≤k<1,函數(shù)y=f(x)與y=-k的圖象有3個交點(diǎn),
即函數(shù)y=f(x)+k的圖象與x軸恰有三個公共點(diǎn);
故答案選:D.
點(diǎn)評:本題主要考查根據(jù)函數(shù)的解析式作出函數(shù)的圖象,體現(xiàn)了化歸與轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l經(jīng)過坐標(biāo)原點(diǎn),直線m與l平行,且直線m在x,y軸上的截距相等,則直線l的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足
2x+y≥4
x≥0
y≥0
,則z=x+y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的通項(xiàng)公式為an=-n2+10n+11(n∈N*),前n項(xiàng)和為Sn,則當(dāng)Sn最大時,n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)i(1+i3)=( 。
A、-1+iB、-1-i
C、1+iD、1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、4+
4
B、4+
2
C、4+
π
2
D、4+π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(α)=sin(π-α)tan(
2
-α),則f(-
31π
3
)的值為( 。
A、-
1
2
B、
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)條件P:
x+2
x
>0,條件Q:|x-1|<1,則P是Q的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列A:a1,a2,…,an(0≤a1<a2<…<an,n≥3)具有性質(zhì)P:對任意i,j(1≤i≤j≤n),aj+ai與aj-ai兩數(shù)中至少有一個是該數(shù)列中的一項(xiàng),給出下列三個結(jié)論:
①數(shù)列0,2,4,6具有性質(zhì)P;
②若數(shù)列A具有性質(zhì)P,則a1=0;
③若數(shù)列a1,a2,a3(0≤a1<a2<a3)具有性質(zhì)P,則a1+a3=2a2
其中,正確結(jié)論的個數(shù)是( 。
A、3B、2C、1D、0

查看答案和解析>>

同步練習(xí)冊答案