6.在(x+y)2(2x+y)3的展開式中,x2y3的系數(shù)為25.

分析 利用二項(xiàng)展開式的通項(xiàng)公式,可得結(jié)論.

解答 解:在(x+y)2(2x+y)3的展開式中,x2y3的系數(shù)為1+2•${C}_{3}^{2}•2$+${C}_{3}^{1}•{2}^{2}$=25
故答案為:25.

點(diǎn)評(píng) 二項(xiàng)展開式的通項(xiàng)公式是解決二項(xiàng)展開式的特定項(xiàng)問題的工具.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知方程x2+y2-6x+2y+m=0.
(1)若此方程表示圓,求實(shí)數(shù)m的取值范圍;
(2)若已知(1)中的圓與直線x+2y-2=0相交于A,B兩點(diǎn),并且以線段AB為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O,求此時(shí)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某三棱錐的三視圖如圖所示,該三棱錐的最長棱的棱長為(  )
A.$\sqrt{61}$B.$\sqrt{41}$C.2$\sqrt{5}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.利用圖象解不等式:
(1)sin2x<-$\frac{1}{2}$;
(2)cos$\frac{x}{4}$≥$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={(x,y)|$\left\{\begin{array}{l}{x≤1}\\{y≤2}\\{x+y≥2}\end{array}\right.$},B={(x,y)|(x+1)2+(y+1)2≤$\frac{4}{5}$},設(shè)P(m,n)∈A,Q(s,t)∈B,則$\frac{n-t}{m-s}$的最小值為(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知直線l與l1:x-3y+6=0平行,且l與兩坐標(biāo)軸圍成的三角形的面積為8,則直線l的方程為x-3y+4$\sqrt{3}$=0.或x-3y-4$\sqrt{3}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)$\overrightarrow{OA}$=(1,1),$\overrightarrow{OB}$=(3,0),$\overrightarrow{OC}$=(3,5)其中O為坐標(biāo)原點(diǎn).
(1)求證:$\overrightarrow{AB}$⊥$\overrightarrow{AC}$;
(2)求三角形ABC的面積;
(3)對(duì)于向量$\overrightarrow{a}$=(x1,y1),$\overrightarrow$=(x2,y2),定義一種運(yùn)算:將x1y1-x2y2的絕對(duì)值記為f($\overrightarrow{a}$•$\overrightarrow$),試計(jì)算f($\overrightarrow{AB}$•$\overrightarrow{AC}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.△ABC內(nèi)接于以O(shè)為圓心的圓O,且3$\overrightarrow{OA}$+4$\overrightarrow{OB}$-5$\overrightarrow{OC}$=$\overrightarrow{0}$.則∠C=135°.若AB=1,求$\overrightarrow{OC}$•$\overrightarrow{AB}$=$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=3+\sqrt{10}cosα}\\{y=1+\sqrt{10}sinα}\end{array}\right.$(α為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.(1)求曲線C的極坐標(biāo)方程,并說明其表示什么軌跡.
(2)若直線的極坐標(biāo)方程為sinθ-cosθ=$\frac{1}{ρ}$,求直線被曲線C截得的弦長.

查看答案和解析>>

同步練習(xí)冊(cè)答案