分析 由點A和點B的坐標(biāo),利用中點坐標(biāo)公式求出線段AB的中點C的坐標(biāo),因為線段AB為所求圓的直徑,所以求出的中點C的坐標(biāo)即為圓心坐標(biāo),然后由圓心C的坐標(biāo)和點A的坐標(biāo),利用兩點間的距離公式求出|AC|的長即為圓的半徑,根據(jù)圓心和半徑寫出圓的標(biāo)準(zhǔn)方程即可.
解答 解:由中點坐標(biāo)公式得線段AB的中點坐標(biāo)為C(4,2),即圓心的坐標(biāo),
r=|AC|=$\sqrt{(6-4)^{2}+(-1-2)^{2}}$=$\sqrt{13}$,
故所求圓的方程為:(x-4)2+(y-2)2=13.
點評 此題考查學(xué)生靈活運用中點坐標(biāo)公式及兩點間的距離公式化簡求值,會根據(jù)圓心和半徑寫出圓的標(biāo)準(zhǔn)方程,是一道基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | sin2x | B. | cos2x | C. | -cos2x | D. | -sin2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 0 | C. | -2 | D. | ±2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com