【題目】觀察下列等式:12=1,12﹣22=﹣3,12﹣22+32=6,12﹣22+32﹣42=﹣10,…由以上等式推測到一個一般的結(jié)論:對于n∈N* , 12﹣22+32﹣42+…+(﹣1)n+1n2=

【答案】
【解析】解:由已知中等式: 12=1= ,
12﹣22=﹣3= ,
12﹣22+32=6=
12﹣22+32﹣42=﹣10= ,

由此我們可以推論出一個一般的結(jié)論:對于n∈N* ,
12﹣22+32﹣42+…+(﹣1)n+1n2=
所以答案是:
【考點精析】解答此題的關(guān)鍵在于理解歸納推理的相關(guān)知識,掌握根據(jù)一類事物的部分對象具有某種性質(zhì),退出這類事物的所有對象都具有這種性質(zhì)的推理,叫做歸納推理.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】南航集團與波音公司2018年2月在廣州簽署協(xié)議,雙方合作的客改貨項目落戶廣州空港經(jīng)濟區(qū).根據(jù)協(xié)議,雙方將在維修技術(shù)轉(zhuǎn)讓、支持項目、管理培訓(xùn)等方面開展戰(zhàn)略合作.現(xiàn)組織者對招募的100名服務(wù)志愿者培訓(xùn)后,組織一次知識競賽,將所得成績制成如下頻率分布直方圖(假定每個分?jǐn)?shù)段內(nèi)的成績均勻分布),組織者計劃對成績前20名的參賽者進行獎勵.

(1)試求受獎勵的分?jǐn)?shù)線;

(2)從受獎勵的20人中利用分層抽樣抽取5人,再從抽取的5人中抽取2人在主會場服務(wù),試求2人成績都在90分以上(含90分)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4﹣4:坐標(biāo)系與參數(shù)方程 曲線C1的參數(shù)方程為 (α為參數(shù)),在以原點O為極點,x軸的正半軸為極軸的極坐標(biāo)系中,曲線C2的極坐標(biāo)方程為ρcos2θ=sinθ.
(1)求曲線C1的極坐標(biāo)方程和曲線C2的直角坐標(biāo)方程;
(2)若射線l:y=kx(x≥0)與曲線C1 , C2的交點分別為A,B(A,B異于原點),當(dāng)斜率k∈(1, ]時,求|OA||OB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為函數(shù)的導(dǎo)函數(shù), .

(1)求的單調(diào)區(qū)間;

(2)當(dāng)時, 恒成立,求的取值范圍 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= 滿足:f(1)=1,f(﹣2)=4.
(1)求a,b的值,并探究是否存在常數(shù)c,使得對函數(shù)f(x)在定義域內(nèi)的任意x,都有f(x)+f(c﹣x)=4成立;
(2)當(dāng)x∈[1,2]時,不等式f(x)≤ 恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)的圖象在點處的切線方程為,求的值;

(2)當(dāng)時,在區(qū)間上至少存在一個,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面ABCD是矩形,平面ABCD,,E,F(xiàn)是線段BC,AB的中點.

證明:

在線段PA上確定點G,使得平面PED,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0)的離心率為 ,與雙曲線x2﹣y2=1的漸近線有四個交點,以這四個交點為頂點的四邊形的面積為16,則橢圓C的方程為(
A. + =1
B. + =1
C. + =1
D. + =1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

已知圓的參數(shù)方程為為參數(shù)),以原點為極點,軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求直線的普通方程和圓的極坐標(biāo)方程;

(2)求直線與圓的交點的極坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案