設(shè)橢圓=1的焦點在y軸上,a∈{1,2,3,4,5},b∈{1,2,3,4,5,6,7},則這樣的橢圓個數(shù)共有(    )

A.35                 B.25                C.48                    D.42

D

解析:因b>a,當(dāng)a=1時,b=2,3,4,…,7.有6個這樣的橢圓,同理可知,當(dāng)a=2,3,4,5時分別有5,4,3,2個這樣的橢圓,故共有6+5+4+3+2=20.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的對稱軸為坐標(biāo)軸,且短軸長為4,離心率為
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的焦點在y軸上,斜率為1的直線l與C相交于A,B兩點,且|AB|=
16
5
2
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:名師指點學(xué)高中課程 數(shù)學(xué) 高二(下) 題型:013

設(shè)橢圓=1的焦點在y軸上,而且a∈{1,2,3,4,5},b∈{1,2,3,4,5,6,7},則這樣的橢圓有

[  ]

A.35個
B.25個
C.21個
D.20個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的對稱軸為坐標(biāo)軸,且短軸長為4,離心率為

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)橢圓C的焦點在y軸上,斜率為1的直線l與C相交于A,B兩點,且,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省宜春市上高二中高二(下)第一次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知橢圓C的對稱軸為坐標(biāo)軸,且短軸長為4,離心率為
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的焦點在y軸上,斜率為1的直線l與C相交于A,B兩點,且,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案