在△ABC中,a,b,c分別是三個內(nèi)角A,B,C的對邊,若a=2,A=
π
4
,cos
B
2
=
2
5
5
,求邊b.
考點:余弦定理
專題:三角函數(shù)的求值
分析:由cos
B
2
的值,利用二倍角的余弦函數(shù)公式求出cosB的值,進而求出sinB的值,再由a,sinA的值,利用正弦定理即可求出b的值.
解答: 解:∵cos
B
2
=
2
5
5
,
∴cosB=2cos2
B
2
-1=
3
5
,
∴sinB=
1-cos2B
=
4
5
,
∵a=2,sinA=
2
2

∴由正弦定理
a
sinA
=
b
sinB
得:b=
asinB
sinA
=
4
5
2
2
=
8
2
5
點評:此題考查了正弦定理,同角三角函數(shù)間的基本關(guān)系,以及特殊角的三角函數(shù)值,熟練掌握正弦定理是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知圓C的內(nèi)接正三角形的邊長為
3
,且圓心為直線x-y+1=0與x軸的交點,則圓C的方程為( 。
A、(x-1)2+y2=1
B、(x-1)2+y2=4
C、(x+1)2+y2=1
D、(x+1)2+y2=4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)x2+x7=a0+a1(x+1)+a2(x+1)2+…+a6(x+1)6+a7(x+1)7,則a6=(  )
A、-5B、-6C、-7D、-8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知四棱錐P-ABCD中,底面ABCD為正方形,邊長為4,PB=PD=5,PC=
41
,求證:PA⊥平面ABCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,PA=AB=2,∠BAD=60°.
(1)求證:BD⊥平面PAC;
(2)求三棱錐C-BPD的高;
(3)求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=4,DE=2AB=3,且F是CD的中點.
(1)求證:AF∥平面BCE;
(2)在線段CE上是否存在點H,使DH⊥平面BCE?若存在,求出
CH
HE
的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知B,C是兩個定點,|BC|=6,且△ABC的周長等于16,求頂點A的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以直角坐標系的原點O為極點,以x軸的正半軸為極軸,建立極坐標系.已知直線l的極坐標方程為ρcosθ=5,橢圓C的直角坐標方程為
x2
4
+
y2
3
=1.點A在直線上,點B在橢圓C上,點P與O、A兩點構(gòu)成等腰三角形(O,P,A為逆時針方向)且頂角∠OPA=120°.
(1)求點P的軌跡的極坐標方程和直角坐標方程;
(2)求|PB|的最小值及取最小值時B的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,E、F分別為棱AD、AB的中點.求證:EF∥平面CB1D1

查看答案和解析>>

同步練習冊答案