把函數(shù)y=logax(a>0,且a≠1)的圖象上所有的點向左平移2個單位長度,再向下平移1個單位長度后得到函數(shù)y=f(x)的圖象,已知函數(shù)y=f(x)的圖象經(jīng)過定點A(m,n).若方程kx2+mx+n=0有且僅有一個零點,則實數(shù)k的值為
 
考點:對數(shù)函數(shù)的圖像與性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由對數(shù)函數(shù)的圖象恒過(1,0),得到平移后的函數(shù)的圖象經(jīng)過的定點,從而求得m,n的值,代入方程后分方程為一次方程和二次方程求得使方程有且僅有一個零點的k的值.
解答: 解:∵函數(shù)y=logax(a>0,且a≠1)的圖象恒過點(1,0),
把函數(shù)y=logax(a>0,且a≠1)的圖象上所有的點向左平移2個單位長度,再向下平移1個單位長度后得到函數(shù)y=f(x)的圖象過定點(-1,-1),
則m=-1,n=-1.
∵方程kx2+mx+n=0有且僅有一個零點,
∴當(dāng)k=0時,方程kx2+mx+n=0化為-x-1=0,即x=-1,符合題意;
當(dāng)k≠0時,由方程kx2+mx+n=0有且僅有一個零點,得
m2-4kn=0,
即(-1)2-4k•(-1)=0,
解得:k=-
1
4

∴使方程kx2+mx+n=0有且僅有一個零點的實數(shù)k的值為0或-
1
4

故答案為:0或-
1
4
點評:本題考查對數(shù)函數(shù)圖象的平移變換規(guī)律,對數(shù)函數(shù)的圖象和性質(zhì),得到考查了分類討論的數(shù)學(xué)思想方法,訓(xùn)練了函數(shù)零點的求法,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若b為a,c的等比中項,則函數(shù)y=ax2+bx+c的零點個數(shù)是( 。
A、0B、1
C、2D、A、B、C都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
2
-
1
2
sin2x

(1)求函數(shù)f(x)的最小正周期和對稱中心;
(2)設(shè)函數(shù)g(x)對任意x∈R,有g(x+
π
2
)=g(x)
,且當(dāng)x∈[0,
π
2
]
時,g(x)=
1
2
-f(x)
,求函數(shù)g(x)在[-π,0]上的解析式.
(3)在(2)的條件下,若對任意的x1∈[
π
6
,任意的x2∈[-
π
3
,都有f(x1)>g(x2)+m,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

袋中有4個紅球,3個黑球,從袋中隨機(jī)取球,設(shè)取到一個紅球得2分,取到一個黑球得1分,從袋中任取4個球,
(1)求得分X的分布列和數(shù)學(xué)期望;
(2)求得分大于6分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

矩形ABCD的中心在坐標(biāo)原點,邊AB與x軸平行,AB=8,BC=6.E,F(xiàn),G,H分別是矩形四條邊的中點,R,S,T是線段OF的四等分點,R′,S′,T′是線段CF的四等分點.設(shè)直線ER與GR′,ES與GS′,ET與GT′的交點依次為L,M,N.
(1)求以HF為長軸,以EG為短軸的橢圓Q的方程;
(2)根據(jù)條件可判定點L,M,N都在(1)中的橢圓Q上,請以點L為例,給出證明(即證明點L在橢圓Q上).
(3)設(shè)線段OF的n(n∈N+,n≥2)等分點從左向右依次為Ri(i=1,2,…,n-1),線段CF的n等分點從上向下依次為Ti(i=1,2,…,n-1),那么直線ERi(i=1,2,…,n-1)與哪條直線的交點一定在橢圓Q上?(寫出結(jié)果即可,此問不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平行四邊形ABCD,M是AD的中點,若
BM
=
a
,
BC
=
b
,則向量
BA
=
 
(用向量
a
,
b
表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過A(2,-3)、B(-4,6)兩點的直線斜率k的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,2),
b
=(0,-1),
c
=(k,-2)
,若(
a
-2
b
)⊥
c
,則實數(shù)k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線x-2y+6=0的橫、縱截距之差為( 。
A、-3B、9C、3D、-9

查看答案和解析>>

同步練習(xí)冊答案