11.下列各數(shù)中最小的數(shù)是( 。
A.111 111(2)B.210(6)C.1 000(4)D.110(8)

分析 2進制轉(zhuǎn)換為十進制的方法是依次累加各位數(shù)字上的數(shù)×該數(shù)位的權(quán)重,其他進制數(shù)轉(zhuǎn)化為十進制方法相同.

解答 解:把A、B、C、D項數(shù)都換成十進制數(shù),那么,
111 111(2)=1×25+1×24+1×23+1×22+1×21+1×20=63,
210(6)=2×62+1×6+0×60=78,
1 000(4)=1×43=64,
110(8)=1×82+1×81+0×80=72,
故通過比較可知A中數(shù)最。
故選:A.

點評 本題主要考查了任意進制數(shù)轉(zhuǎn)化為十進制數(shù)的方法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知:$\overrightarrow{a}$=(-2,m),且|$\overrightarrow{a}$|=3,則m=$±\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{{\sqrt{5}}}{3}$,定點M(2,0),橢圓短軸的端點是B1,B2,且MB1⊥MB2
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)過點M且斜率不為0的直線交橢圓C于A,B兩點.試問x軸上是否存在定點P,使△APB內(nèi)切圓圓心的縱坐標(biāo)為定值?若存在,求出點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.橢圓$\frac{x^2}{25}+\frac{y^2}{169}=1$的焦點坐標(biāo)是(0,12),(0,-12).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),兩定直線l1x=-$\frac{{a}^{2}}{c}$,l2:x=$\frac{{a}^{2}}{c}$,直線l1恰為拋物線E:y2=16x的準(zhǔn)線,直線l:x+2y-4=0與橢圓相切.
(1)求橢圓C的方程;
(2)如果橢圓C的左頂點為A,右焦點為F,過F的直線與橢圓C交于P,Q兩點,直線AP,AQ與直線l2分別交于N,M兩點,求證:四邊形MNPQ的對角線的交點是定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右頂點分別為A1,A2,且|A1A2|=4$\sqrt{3}$,P為橢圓上異于A1,A2的點,PA1和PA2的斜率之積為-$\frac{1}{3}$.以M(-3,2)為圓心,r為半徑的圓與橢圓C交于A,B兩點.
(1)求橢圓C的方程;
(2)若A,B兩點關(guān)于原點對稱,求圓M的方程;
(3)若點A的坐標(biāo)為(0,2),求△ABM的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.若函數(shù)f(x)=3x2-5x+a的兩個零點分別為x1,x2.且有-2<x1<0與1<x2<3,試求出a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.橢圓kx2+8ky2=8的一個焦點為$(\sqrt{21},0)$,則k的值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,已知四邊形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F(xiàn),G,H分別為BP,BE,PC的中點.
(Ⅰ)求證:平面FGH∥平面PDE;
(Ⅱ)求證:平面FGH⊥平面AEB;
(Ⅲ)在線段PC上是否存在一點M,使PB⊥平面EFM?若存在,求出線段PM的長;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案