(本題12分)如圖,已知△ABC是邊長為1的正三角形,M、N分別是

邊AB、AC上的點(diǎn),線段MN經(jīng)過△ABC的中心G,設(shè)ÐMGA=a(

(1)試將△AGM、△AGN的面積(分別記為S1與S2)表示為a的函數(shù)

(2)求y=的最大值與最小值

          

 

【答案】

(1)S1GM·GA·sina=,S2  

(2)當(dāng)a=或a=時,y取得最大值ymax=240   10分

當(dāng)a=時,y取得最小值ymin=216                            

【解析】因?yàn)镚是邊長為1的正三角形ABC的中心,

所以   AG=,ÐMAG=,               2分

由正弦定理

則S1GM·GA·sina=             4分

同理可求得S2                   6分

(1)   y=       8分

=72(3+cot2a)

因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012052316540996872424/SYS201205231659293750944415_DA.files/image013.png">,所以當(dāng)a=或a=時,y取得最大值ymax=240   10分

當(dāng)a=時,y取得最小值ymin=216                                    12分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014屆浙江省高二9月質(zhì)量檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題12分)如圖,在側(cè)棱錐垂直底面的四棱錐ABCD-A1B1C1D1中,AD∥BC,

AD⊥AB,AB=。AD=2,BC=4,AA1=2,E是DD1的中點(diǎn),F(xiàn)是平面B1C1E

與直線AA1的交點(diǎn)。

(1)證明:(i)EF∥A1D1

(ii)BA1⊥平面B1C1EF;

(2)求BC1與平面B1C1EF所成的角的正弦值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆廣東省高二文科數(shù)學(xué)競賽試卷(解析版) 題型:解答題

(本題12分)如圖所示,在直四棱柱中, ,點(diǎn)是棱上一點(diǎn).

(1)求證:;

(2)求證:;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省高三全真模擬考試數(shù)學(xué)文卷 題型:解答題

((本題12分)如圖所示,在直四棱柱中, ,點(diǎn)是棱上一點(diǎn)

(1)求證:;

(2)求證:;

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012年山東省濟(jì)寧市高二上學(xué)期期中考試文科數(shù)學(xué) 題型:解答題

(本題12分)如圖1,在直角梯形ABCD中,∠ADC=90°,CDAB,AB=4,ADCD=2,M為線段AB的中點(diǎn),將△ACD沿折起,使平面ACD⊥平面ABC,得到幾何體DABC,如圖2所示.

(Ⅰ)求證:BC⊥平面ACD;

(Ⅱ)求二面角ACDM的余弦值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆四川省巴中市四縣中高二上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題

((本題12分)如圖2,在棱長為1的正方體ABCD—A1B1C1D1中,點(diǎn)E、F、G分別是DD1、BD、BB1的中點(diǎn)。

(Ⅰ)求直線EF與直線CG所成角的余弦值;

 (Ⅱ)求直線C1C與平面GFC所成角的正弦值;

     (Ⅲ)求二面角E—FC—B的余弦值。

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案