3.若F1,F(xiàn)2為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點,O為坐標原點,P在雙曲線左支上(點P異于左頂點),M在右準線上,且滿足$\overrightarrow{{F}_{1}O}$=$\overrightarrow{PM}$.
(1)若$\frac{\overrightarrow{OP}•\overrightarrow{OM}}{|\overrightarrow{OP}||\overrightarrow{OM}|}$=$\frac{\overrightarrow{O{F}_{1}}•\overrightarrow{OP}}{|\overrightarrow{O{F}_{1}}||\overrightarrow{OP}|}$,求此雙曲線的離心率;
(2)在(1)的條件下,此雙曲線又過點N(2,$\sqrt{3}$),求雙曲線方程.

分析 (1)由$\overrightarrow{{F}_{1}O}$=$\overrightarrow{PM}$,可得四邊形F1OMP是平行四邊形,又$\frac{\overrightarrow{OP}•\overrightarrow{OM}}{|\overrightarrow{OP}||\overrightarrow{OM}|}$=$\frac{\overrightarrow{O{F}_{1}}•\overrightarrow{OP}}{|\overrightarrow{O{F}_{1}}||\overrightarrow{OP}|}$,可知F1OMP是菱形,由此可以導出a,b,c的數(shù)量關(guān)系,從而求出雙曲線的離心率;
(2)運用離心率公式和N滿足雙曲線的方程,解方程可得a,b,即可得到所求雙曲線的方程.

解答 解:(1)∵$\overrightarrow{{F}_{1}O}$=$\overrightarrow{PM}$,
∴四邊形F1OMP是平行四邊形,
又$\frac{\overrightarrow{OP}•\overrightarrow{OM}}{|\overrightarrow{OP}||\overrightarrow{OM}|}$=$\frac{\overrightarrow{O{F}_{1}}•\overrightarrow{OP}}{|\overrightarrow{O{F}_{1}}||\overrightarrow{OP}|}$,
可得cos∠POM=cos∠POF1,
即有∠POM=∠POF1
則四邊形F1OMP是菱形,
設(shè)PM與y軸交于點N,
∵|F1O|=|PM|=c,|MN|=$\frac{{a}^{2}}{c}$,
∴P點的橫坐標為-(c-$\frac{{a}^{2}}{c}$)=-$\frac{^{2}}{c}$,
把x=-$\frac{^{2}}{c}$代入雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,得y=±$\sqrt{\frac{{c}^{4}}{{a}^{2}}-\frac{{a}^{4}}{{c}^{2}}-4{c}^{2}+4{a}^{2}}$,
∴M($\frac{{a}^{2}}{c}$,$\frac{{c}^{4}}{{a}^{2}}$-$\frac{{a}^{4}}{{c}^{2}}$-4c2+4a2),
∴|OM|=$\sqrt{\frac{{c}^{4}}{{a}^{2}}-4{c}^{2}+4{a}^{2}}$.
∵四邊形F1OMP是菱形,∴|OM|=|F1O|,
即$\sqrt{\frac{{c}^{4}}{{a}^{2}}-4{c}^{2}+4{a}^{2}}$=c.
整理得e4-5e2+4=0,解得e2=4或e2=1(舍去).
∴e=2,或e=-2(舍去).
(2)由(1)可得c=2a,b=$\sqrt{{c}^{2}-{a}^{2}}$=$\sqrt{3}$a,
代入點N(2,$\sqrt{3}$),可得
$\frac{4}{{a}^{2}}$-$\frac{3}{^{2}}$=1,
解方程可得,a=$\sqrt{3}$,b=3,
即有雙曲線的方程為$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{9}$=1.

點評 本題考查雙曲線的離心率和方程,考查向量的共線和數(shù)量積的夾角公式,考查運算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

13.若函數(shù)f(x)對定義域中任意x均滿足f(x)+f(2a-x)=2b,則函數(shù)f(x)的圖象關(guān)于點(a,b)對稱.
(1)已知函數(shù)f(x)=$\frac{{{x^2}+mx+m}}{x}$的圖象關(guān)于點(0,1)對稱,求實數(shù)m的值;
(2)已知函數(shù)g(x)在(-∞,0)∪(0,+∞)上的圖象關(guān)于點(0,1)對稱,且當x∈(0,+∞)時,g(x)=x2+ax+1,求函數(shù)g(x)在(-∞,0)上的解析式;
(3)在(1)、(2)的條件下,若對實數(shù)x<0及t>0,恒有g(shù)(x)<f(t)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.(1)如果${3^{-5x}}>{({\frac{1}{3}})^{x+6}}$,求x的取值范圍?
(2)如果loga(2x)>loga(-x+9),求x的取值范圍?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,在多面體ABCDEF中,底面ABCD是邊長為2的菱形,∠BAD=60°,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分別是CE和CF的中點.
(Ⅰ)求證:平面BDGH∥平面AEF;
(Ⅱ)求二面角H-BD-C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在數(shù)列{an}中,a1=1,a2=3,且an+1=(p+q)an-pqan-1(n≥2,q≠0).
(Ⅰ)若p=2,設(shè)bn=an+1-2an(n∈N*),證明:{bn}是等比數(shù)列;
(Ⅱ)對任意的n∈N*,設(shè)cn=an+1-qan,證明:“數(shù)列{cn}為常數(shù)列”的充要條件是“p=1”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知點P為圓C:(x-2)2+(y-3)2=4上一動點,點A(4,0),且$\overrightarrow{AQ}$=$\frac{1}{3}$$\overrightarrow{AP}$,求動點Q的軌跡.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知集合A={x|3<x<7},B={x|m<x<8},m∈R.
(1)當m=1時,求A∩B
(2)若A⊆B,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{2}$,$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow{a}$•$\overrightarrow$=$±\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知全集U={x|x2<16且x∈N},集A={1,2},集B={2,3}則∁UA∩B={3}.

查看答案和解析>>

同步練習冊答案