6.對于函數(shù)f(x)和g(x)定義運算“*”如下:設(shè)D為f(x)和g(x)的公共定義域,對下任意x∈D,當f(x)≤g(x)時,f(x)*g(x)=f(x),當f(x)>g(x)時,f(x)*g(x)=g(x),己知f(x)=$\sqrt{x+3}$,g(x)=3-x,則f(x)*g(x)的最大值是2.

分析 先求f(x)與g(x)的公共定義域,再討論以確定f(x)*g(x)=$\left\{\begin{array}{l}{\sqrt{x+3},-3≤x≤1}\\{3-x,x>1}\end{array}\right.$,從而判斷單調(diào)性以求最大值.

解答 解:函數(shù)f(x)=$\sqrt{x+3}$與g(x)=3-x的公共定義域為[-3,+∞),
當-3≤x≤1時,f(x)≤g(x),
當x>1時,f(x)>g(x);
故f(x)*g(x)=$\left\{\begin{array}{l}{\sqrt{x+3},-3≤x≤1}\\{3-x,x>1}\end{array}\right.$,
故f(x)*g(x)在[-3,1]上單調(diào)遞增,
在(1,+∞)上單調(diào)遞減;
故當x=1時,f(x)*g(x)有最大值2,
故答案為:2.

點評 本題考查了分類討論的思想應用及分段函數(shù)的應用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)y=f(x)是奇函數(shù),且在[0,+∞)上是增函數(shù).設(shè)θ∈(0,2π),求滿足不等式f(sinθ(cosθ-$\frac{\sqrt{3}}{2}$))<0的θ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知log53=a,log54=b,則log5270可表示為(  )
A.$\frac{3}{2}$abB.3a+$\frac{2}$+1C.3a+$\frac{2}$D.a3+$\sqrt$+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知集合A={1,2,3,4},則滿足條件{1}?B⊆A的集合B的個數(shù)有7個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.指數(shù)函數(shù)f(x)=ax,a>0,a≠1滿足性質(zhì):對任意的x∈R,f(-x)•f(x)=1,函數(shù)g(x)的定義域為R,且g(x)也滿足這個性質(zhì),若g(x)既不是指數(shù)函數(shù)也不是常值函數(shù),那么g(x)可以是g(x)=-ax(a>0,且a≠1)(x∈R).(任寫一個符合條件的函數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.化簡:
$\frac{\sqrt{1-2sin400°cos(-320°)}}{cos50°-\sqrt{1-si{n}^{2}4{0}^{°}}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設(shè)0≤θ≤2π,如果sinθ>0且cos2θ>0,則θ的取值范圍是( 。
A.0<θ<$\frac{3π}{4}$B.0<θ<$\frac{π}{4}$或$\frac{3π}{4}$<θ<πC.$\frac{3π}{4}$<θ<πD.$\frac{3π}{4}$<θ<$\frac{5π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.求下列函數(shù)的定義域:
(1)y=$\frac{1}{1-lo{g}_{2}x}$;
(2)y=$\sqrt{2-lgx}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.下列命題中,假命題是(1)(3)(選出所有可能的答案)
(1)有兩個面互相平行,其余各個面都是平行四邊形的多面體是棱柱
(2)四棱錐的四個側(cè)面都可以是直角三角形
(3)有兩個面互相平行,其余各面都是梯形的多面體是棱臺
(4)若一個幾何體的三視圖都是矩形,則這個幾何體是長方體.

查看答案和解析>>

同步練習冊答案