在函數(shù)y=cosx,y=
x
,y=ex,y=lgx中,偶函數(shù)是(  )
A、y=cosx
B、y=
x
C、y=ex
D、y=lgx
考點:函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)奇偶性的定義進(jìn)行判斷即可得到結(jié)論.
解答: 解:y=
x
,y=ex,y=lgx為非奇非偶函數(shù),
y=cosx是偶函數(shù),
故選:A
點評:本題主要考查函數(shù)奇偶性的判斷,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)軸上不同的兩點A、B分別與實數(shù)x1、x2對應(yīng),則線段AB的中點M與實數(shù)
x1+x2
2
對應(yīng).由此結(jié)論類比到平面:若平面上不共線的三點A、B、C分別與實數(shù)對(x1,y1)、(x2,y2)、(x3,y3)對應(yīng),則△ABC的重心G與
 
對應(yīng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀如圖程序框圖,為使輸出的數(shù)據(jù)為30,則判斷框中應(yīng)填人的條件為(  )
A、i≤4B、i≤5
C、i≤6D、i≤7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以拋物線y2=8x上的任意一點為圓心作圓與直線x+2=0相切,這些圓必過一定點,則這一定點的坐標(biāo)是( 。
A、(0,2)
B、(2,0)
C、(4,0)
D、(0,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
-
b
=-8
i
+16
j
,
a
+
b
=2
i
-8
j
i
,
j
為互相垂直的單位向量),則
a
b
=( 。
A、63B、-63
C、33D、-33

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

掌握數(shù)學(xué),一個美好的祝愿:張開你的右手,你將看到你的掌紋,有人稱它是命運的密語,其實是我們所熟悉函數(shù)的圖象,每天都握在我們的掌心.某人的掌紋如圖所示,在所給的直角坐標(biāo)系中,它們只可能是下列給出的5個函數(shù)中的( 。
①y=(
3
2
x  
②y=(
2
3
x   
③y=
x
-
1
2
  
④y=ln(x+
1
2
)   
⑤y=ln(x-
1
2
A、②③⑤B、①③④
C、①③⑤D、②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下說法正確是( 。
A、垂直于同一條直線的兩條直線互相垂直
B、平行于同一條直線的兩條直線互相平行
C、垂直于同一條直線的兩個平面互相垂直
D、平行于同一條直線的兩個平面互相平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=2sin(x+
π
3
)的圖象上所有點的橫坐標(biāo)縮短到原來的
1
2
(縱坐標(biāo)不變),所得圖象對應(yīng)的表達(dá)式為(  )
A、y=2sin(
1
2
x+
π
3
B、y=2sin(
1
2
x+
π
6
C、y=2sin(2x+
π
3
D、y=2sin(2x+
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某高校在2012年的自主招生考試中隨機抽取60名學(xué)生的筆試成績,按成績共分成五組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100),得到的頻率分布直方圖如圖所示,同時規(guī)定成績在85分以上(含85分)的學(xué)生為“優(yōu)秀”,成績小于85分的學(xué)生為“良好”,且只有成績?yōu)椤皟?yōu)秀”的學(xué)生才能獲得面試資格.
(Ⅰ)求出第4組的頻率,并補全頻率分布直方圖;
(Ⅱ)如果用分層抽樣的方法從“優(yōu)秀”和“良好”的學(xué)生中選出5人,再從這5人中選2人,那么至少有一人是“優(yōu)秀”的概率是多少?
(Ⅲ)若該校決定在第4,5組中隨機抽取2名學(xué)生接受考官A的面試,第5組中有ξ名學(xué)生被考官A面試,求ξ的分布列.

查看答案和解析>>

同步練習(xí)冊答案