【題目】已知函數(shù) .

(1)當(dāng)時(shí),若函數(shù)恰有一個(gè)零點(diǎn),求的取值范圍;

(2)當(dāng)時(shí), 恒成立,求的取值范圍.

【答案】(1) ;(2) .

【解析】試題分析: 當(dāng)時(shí)代入,得,求導(dǎo),分類討論當(dāng)時(shí)、當(dāng)時(shí)、當(dāng)時(shí)三種情況求出的取值范圍(2)構(gòu)造,求導(dǎo),討論、、三種情況,求出的取值范圍

解析:(1)函數(shù)的定義域?yàn)?/span>.

當(dāng)時(shí), ,所以.

①當(dāng)時(shí), , 時(shí)無(wú)零點(diǎn).

②當(dāng)時(shí), ,所以上單調(diào)遞增,

,則,

因?yàn)?/span>,所以,此時(shí)函數(shù)恰有一個(gè)零點(diǎn).

③當(dāng)時(shí),令,解得.

當(dāng)時(shí), ,所以上單調(diào)遞減;

當(dāng)時(shí), ,所以上單調(diào)遞增.

要使函數(shù)有一個(gè)零點(diǎn),則.

綜上所述,若函數(shù)恰有一個(gè)零點(diǎn),則.

(2)令 ,根據(jù)題意,當(dāng)時(shí), 恒成立.

.

①若,則時(shí), 恒成立,所以上是增函數(shù),且,所以不符題意.

②若,則時(shí), 恒成立,所以上是增函數(shù),且,所以不符題意.

③若,則時(shí),恒有,故上是減函數(shù),于是“對(duì)任意都成立”的充要條件是,即,解得,故.

綜上, 的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列結(jié)論:

①若,則“”成立的一個(gè)充分不必要條件是“,且”;

②存在,使得

③若函數(shù)的導(dǎo)函數(shù)是奇函數(shù),則實(shí)數(shù);

④平面上的動(dòng)點(diǎn)到定點(diǎn)的距離比軸的距離大1的點(diǎn)的軌跡方程為.

其中正確結(jié)論的序號(hào)為_________.(填寫所有正確的結(jié)論序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取60名學(xué)生,將其數(shù)學(xué)成績(jī)(均為整數(shù))分成六組[90100),[100110),[140,150]后得到如下部分頻率分布直方圖,觀察圖形的信息,回答下列問(wèn)題:

1)求分?jǐn)?shù)在[120,130)內(nèi)的頻率;

2)若在同一組數(shù)據(jù)中,將該組區(qū)間的中點(diǎn)值(如:組區(qū)間[100110)的中點(diǎn)值為=105)作為這組數(shù)據(jù)的平均分,據(jù)此,估計(jì)本次考試的平均分;

3)用分層抽樣的方法在分?jǐn)?shù)段為[110130)的學(xué)生中抽取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中任取2人,求至多有1人在分?jǐn)?shù)段[120,130)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,四邊形為菱形, , ,且平面平面.

(1)求證: ;

(2)若, ,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和滿足 .

(1)求數(shù)列的通項(xiàng)公式;

(2)若數(shù)列滿足,

(I)求數(shù)列的前項(xiàng)和;

(II)求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若,證明:;

2)若,且,求的取值范圍;

3)若,且方程個(gè)不同的根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知稱為,的二維平方平均數(shù),稱為,的二維算術(shù)平均數(shù),稱為的二維幾何平均數(shù),稱為,的二維調(diào)和平均數(shù),其中,均為正數(shù).

(1)試判斷的大小,并證明你的猜想.

(2)令,試判斷的大小,并證明你的猜想.

(3)令,,試判斷、三者之間的大小關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某玩具所需成本費(fèi)用為PP=1 000+5xx2,而每套售出的價(jià)格為Q其中Q(x)=a (a,bR),

(1)問(wèn):玩具廠生產(chǎn)多少套時(shí)使得每套所需成本費(fèi)用最少?

(2)若生產(chǎn)出的玩具能全部售出,且當(dāng)產(chǎn)量為150套時(shí)利潤(rùn)最大此時(shí)每套價(jià)格為30,a,b的值.(利潤(rùn)=銷售收入-成本).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC的頂點(diǎn)C在直線3x﹣y=0上,頂點(diǎn)A、B的坐標(biāo)分別為(4,2),(0,5).

)求過(guò)點(diǎn)A且在x,y軸上的截距相等的直線方程;

)若ABC的面積為10,求頂點(diǎn)C的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案