【題目】已知函數(shù) .
(1)當(dāng)時(shí),若函數(shù)恰有一個(gè)零點(diǎn),求的取值范圍;
(2)當(dāng)時(shí), 恒成立,求的取值范圍.
【答案】(1) 或;(2) .
【解析】試題分析: 將當(dāng)時(shí)代入,得,求導(dǎo),分類討論當(dāng)時(shí)、當(dāng)時(shí)、當(dāng)時(shí)三種情況求出的取值范圍(2)構(gòu)造,求導(dǎo),討論、、三種情況,求出的取值范圍
解析:(1)函數(shù)的定義域?yàn)?/span>.
當(dāng)時(shí), ,所以.
①當(dāng)時(shí), , 時(shí)無(wú)零點(diǎn).
②當(dāng)時(shí), ,所以在上單調(diào)遞增,
取,則,
因?yàn)?/span>,所以,此時(shí)函數(shù)恰有一個(gè)零點(diǎn).
③當(dāng)時(shí),令,解得.
當(dāng)時(shí), ,所以在上單調(diào)遞減;
當(dāng)時(shí), ,所以在上單調(diào)遞增.
要使函數(shù)有一個(gè)零點(diǎn),則即.
綜上所述,若函數(shù)恰有一個(gè)零點(diǎn),則或.
(2)令 ,根據(jù)題意,當(dāng)時(shí), 恒成立.
又 .
①若,則時(shí), 恒成立,所以在上是增函數(shù),且,所以不符題意.
②若,則時(shí), 恒成立,所以在上是增函數(shù),且,所以不符題意.
③若,則時(shí),恒有,故在上是減函數(shù),于是“對(duì)任意都成立”的充要條件是,即,解得,故.
綜上, 的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列結(jié)論:
①若,則“”成立的一個(gè)充分不必要條件是“,且”;
②存在,使得;
③若函數(shù)的導(dǎo)函數(shù)是奇函數(shù),則實(shí)數(shù);
④平面上的動(dòng)點(diǎn)到定點(diǎn)的距離比到軸的距離大1的點(diǎn)的軌跡方程為.
其中正確結(jié)論的序號(hào)為_________.(填寫所有正確的結(jié)論序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取60名學(xué)生,將其數(shù)學(xué)成績(jī)(均為整數(shù))分成六組[90,100),[100,110),…,[140,150]后得到如下部分頻率分布直方圖,觀察圖形的信息,回答下列問(wèn)題:
(1)求分?jǐn)?shù)在[120,130)內(nèi)的頻率;
(2)若在同一組數(shù)據(jù)中,將該組區(qū)間的中點(diǎn)值(如:組區(qū)間[100,110)的中點(diǎn)值為=105)作為這組數(shù)據(jù)的平均分,據(jù)此,估計(jì)本次考試的平均分;
(3)用分層抽樣的方法在分?jǐn)?shù)段為[110,130)的學(xué)生中抽取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中任取2人,求至多有1人在分?jǐn)?shù)段[120,130)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和滿足 .
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足,
(I)求數(shù)列的前項(xiàng)和;
(II)求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)若,證明:;
(2)若,且,求的取值范圍;
(3)若,且方程有個(gè)不同的根,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知稱為,的二維平方平均數(shù),稱為,的二維算術(shù)平均數(shù),稱為,的二維幾何平均數(shù),稱為,的二維調(diào)和平均數(shù),其中,均為正數(shù).
(1)試判斷與的大小,并證明你的猜想.
(2)令,,試判斷與的大小,并證明你的猜想.
(3)令,,,試判斷、、三者之間的大小關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某玩具所需成本費(fèi)用為P元,且P=1 000+5x+x2,而每套售出的價(jià)格為Q元,其中Q(x)=a+ (a,b∈R),
(1)問(wèn):玩具廠生產(chǎn)多少套時(shí),使得每套所需成本費(fèi)用最少?
(2)若生產(chǎn)出的玩具能全部售出,且當(dāng)產(chǎn)量為150套時(shí)利潤(rùn)最大,此時(shí)每套價(jià)格為30元,求a,b的值.(利潤(rùn)=銷售收入-成本).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的頂點(diǎn)C在直線3x﹣y=0上,頂點(diǎn)A、B的坐標(biāo)分別為(4,2),(0,5).
(Ⅰ)求過(guò)點(diǎn)A且在x,y軸上的截距相等的直線方程;
(Ⅱ)若△ABC的面積為10,求頂點(diǎn)C的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com