14.函數(shù)$y={log_{\frac{1}{2}}}(3-2x-{x^2})$的單調(diào)增區(qū)間為(-1,1),值域?yàn)閇-2,+∞).

分析 根據(jù)對(duì)數(shù)函數(shù)以及二次函數(shù)的性質(zhì)求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的值域即可.

解答 解:∵函數(shù)$y={log_{\frac{1}{2}}}(3-2x-{x^2})$,
而y=3-2x-x2的對(duì)稱軸為:x=-1,
由3-2x-x2>0,解得:-3<x<1,
∴函數(shù)y=3-2x-x2在(-3,-1)遞增,在(-1,1)遞減,
根據(jù)函數(shù)同增異減的原則,
得:函數(shù)$y={log_{\frac{1}{2}}}(3-2x-{x^2})$的單調(diào)增區(qū)間為:(-1,1),
當(dāng)x=-1時(shí):函數(shù)$y={log_{\frac{1}{2}}}(3-2x-{x^2})$取得最小值為-2,
故函數(shù)的值域是[-2,+∞);
故答案為:(-1,1),[-2,+∞).

點(diǎn)評(píng) 本題考查了對(duì)數(shù)函數(shù)以及二次函數(shù)的性質(zhì),考查復(fù)合函數(shù)的單調(diào)性、最值問(wèn)題,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知△ABC的外接圓半徑為1,圓心為O,且3$\overrightarrow{OA}+4\overrightarrow{OB}+5\overrightarrow{OC}=\overrightarrow{0}$,則△ABC的面積為(  )
A.$\frac{8}{5}$B.$\frac{7}{5}$C.$\frac{6}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在(2x2-$\frac{1}{3\sqrt{x}}$)n的展開(kāi)式中含常數(shù)項(xiàng),則正整數(shù)n的最小值是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知某幾何體的三視圖(單位:cm)如圖所示,則該幾何體表面積是124+2$\sqrt{34}$cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)$f(x)=cosx•\sqrt{\frac{1+sinx}{1-sinx}}+sinx•\sqrt{\frac{1+cosx}{1-cosx}}$
(1)當(dāng)$x∈(0,\frac{π}{2})$時(shí),化簡(jiǎn)f(x)的解析式并求f(x)的對(duì)稱軸和對(duì)稱中心;
(2)當(dāng)$x∈(π,\frac{3π}{2})$時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.計(jì)算:
(1)${(\sqrt{2}-1)^0}+{(\frac{16}{9})^{-\frac{1}{2}}}+{(\sqrt{8})^{-\frac{4}{3}}}$;
(2)${2^{{{log}_2}}}^{\frac{1}{4}}-{({\frac{8}{27}})^{-\frac{2}{3}}}+lg\frac{1}{100}+{(\sqrt{2}-1)^{lg1}}+2lg(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.對(duì)于函數(shù)f(x)定義域中任意的x1,x2(x1≠x2),有如下結(jié)論:
 ①f(x1+x2)=f(x1)f(x2);
②f(x1x2)=f(x1)+f(x2);
 ③$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$.
當(dāng)f(x)=ex時(shí),上述結(jié)論中正確結(jié)論的序號(hào)是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.將一個(gè)各個(gè)面上均涂有顏色的正方體鋸成n3(n≥3)個(gè)同樣大小的小正方體,從這些小正方體中任取1個(gè),則其中三面都涂有顏色的概率為( 。
A.$\frac{1}{n^3}$B.$\frac{4}{n^3}$C.$\frac{8}{n^3}$D.$\frac{1}{n^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知圓C:(x+1)2+y2=8.
(1)設(shè)點(diǎn)Q(x,y)是圓C上一點(diǎn),求x+y的取值范圍;
(2)在直線x+y-7=0上找一點(diǎn)P(m,n),使得過(guò)該點(diǎn)所作圓C的切線段最短.

查看答案和解析>>

同步練習(xí)冊(cè)答案