設(shè)函數(shù)f(x)=(x-a)(x-b)(x-c),其中a,b,c成公差為
3
的等差數(shù)列,求f(x)在[a,c]的最大值與最小值.
考點:等差數(shù)列的性質(zhì),基本不等式
專題:計算題,等差數(shù)列與等比數(shù)列
分析:求導(dǎo)數(shù),利用a,b,c成公差為
3
的等差數(shù)列,令f′(x)=0,可得x=b-1或x=b+1,且函數(shù)在(a,b-1),(b-1,c)上單調(diào)增,在(b-1,b+1)單調(diào)遞減,即可求出f(x)在[a,c]的最大值與最小值.
解答: 解:∵f(x)=(x-a)(x-b)(x-c),a,b,c成公差為
3
的等差數(shù)列,
∴f′(x)=(x-b)(x-c)+(x-a)(x-b)+(x-a)(x-c)=3(x-b-1)(x-b+1),
令f′(x)=0,可得x=b-1或x=b+1,且函數(shù)在(a,b-1),(b-1,c)上單調(diào)增,在(b-1,b+1)單調(diào)遞減,
∴x=b-1時,f(x)max=2,x=b+1時,f(x)min=-2.
點評:本題考查等差數(shù)列的性質(zhì),考查導(dǎo)數(shù)知識的運用,正確運用導(dǎo)數(shù)是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某工廠生產(chǎn)A、B兩種產(chǎn)品,計劃每種產(chǎn)品的生產(chǎn)量不少于15千克,已知生產(chǎn)A產(chǎn)品1千克要用煤9噸,電力4千瓦,3個工作日;生產(chǎn)B產(chǎn)品1千克要用煤4噸,電力5千瓦,10個工作日.又知生產(chǎn)出A產(chǎn)品1千克可獲利7萬元,生產(chǎn)出B產(chǎn)品1千克可獲利12萬元,現(xiàn)在工廠只有煤360噸,電力200千瓦,300個工作日,
(1)列出滿足題意的不等式組,并畫圖;
(2)在這種情況下,生產(chǎn)A、B產(chǎn)品各多少千克能獲得最大經(jīng)濟(jì)效益.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{bn}是等差數(shù)列,b1=1,b1+b2+…+b10=145.
(1)求數(shù)列{bn}的通項公式bn;
(2)設(shè)數(shù)列{an}滿足an=2(2+bn,記Sn為數(shù)列{an}的前n項和,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓G:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
3
3
,長軸長為2
3

(Ⅰ)求G的方程;
(Ⅱ)直線y=kx+1與橢圓G交于不同的兩點A,B,若存在點M(m,0),使得|AM|=|BM|成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a1=
1
3
,公比q=
1
3
,Sn為{an}的前n項和
(Ⅰ)求Sn
(Ⅱ)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:ax-2y+2=0(a∈R)
(1)若與直線m:x+(a-3)y+1=0(a∈R)平行,求a;
(2)若直線l始終平分圓C:(x-1)2+y2=2的周長,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

邊長為2
2
的正△ABC內(nèi)接于體積為4
3
π的球,則球面上的點到△ABC最大距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的前n項和為Sn(n∈N*),已知a10=18,S5=-15.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{an}的前n項和的最小值,并指出此時n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若A(1,2,1),B(2,2,2),點P在x軸上,且|PA|=|PB|,則點P的坐標(biāo)為
 

查看答案和解析>>

同步練習(xí)冊答案