【題目】已知函數(shù).

1)討論的單調(diào)性;

2)若有兩個大于的零點(diǎn),求的取值范圍.

【答案】1遞減,在遞增;(2

【解析】

1)求出函數(shù)的導(dǎo)數(shù),通過討論的范圍求出函數(shù)的單調(diào)區(qū)間即可;
2)通過討論的范圍,結(jié)合函數(shù)的零點(diǎn)的個數(shù)及其范圍得到關(guān)于的不等式組,求出的范圍即可.

解:(1的定義域是,

i)當(dāng)時,,遞減,

ii)當(dāng)時,令,解得

,解得,

遞減,在遞增;

iii)當(dāng)時,令,解得,

,解得,

遞減,在遞增;

2)由(1)可得若函數(shù)個大于的零點(diǎn),則,

i)當(dāng)時,需,無解,

ii)當(dāng)時,需,解得:

且當(dāng)時,遞減,

個零點(diǎn),

下面證明,

,,

當(dāng)時,,函數(shù)遞減,

當(dāng)時,,函數(shù)遞增,

,即,

,

遞增,故個零點(diǎn),

綜上,的范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)用五點(diǎn)法作出函數(shù)在一個周期內(nèi)的圖象;

2)寫出的單調(diào)區(qū)間;

3)寫出在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 山東省《體育高考方案》于20122月份公布,方案要求以學(xué)校為單位進(jìn)行體育測試,某校對高三1班同學(xué)按照高考測試項目按百分制進(jìn)行了預(yù)備測試,并對50分以上的成績進(jìn)行統(tǒng)計,其頻率分布直方圖如圖所示,若90~100分?jǐn)?shù)段的人數(shù)為2.

)請估計一下這組數(shù)據(jù)的平均數(shù)M;

)現(xiàn)根據(jù)初賽成績從第一組和第五組(從低分段到高分段依次為第一組、第二組、、第五組)中任意選出兩人,形成一個小組.若選出的兩人成績差大于20,則稱這兩人為幫扶組,試求選出的兩人為幫扶組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)若函數(shù)上遞增,在上遞減,求實數(shù)的值.

2)討論上的單調(diào)性;

3)若方程有兩個不等實數(shù)根,求實數(shù)的取值范圍,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在點(diǎn)處的切線方程為.

(1)若函數(shù)時有極值,求的解析式;

(2)函數(shù)在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】趙爽是我國古代數(shù)學(xué)家、天文學(xué)家,大約在公元222年,趙爽為《周髀算經(jīng)》一書作序時,介紹了“勾股圓方圖”,亦稱“趙爽炫圖”(以弦為邊長得到的正方形組成).類比“趙爽弦圖”,可類似地構(gòu)造如下圖所示的圖形,它是由3個全等的三角形與中間的一個小等邊三角形拼成的一個大等邊三角形,設(shè),若在大等邊三角形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小等邊三角形的概率是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三年級共有學(xué)生名,為了解學(xué)生某次月考的情況,抽取了部分學(xué)生的成績(得分均為整數(shù),滿分為分)進(jìn)行統(tǒng)計,繪制出如下尚未完成的頻率分布表:

分組

頻數(shù)

頻率

(1)補(bǔ)充完整題中的頻率分布表;

(2)若成績在為優(yōu)秀,估計該校高三年級學(xué)生在這次月考中,成績優(yōu)秀的學(xué)生約為多少人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).M是曲線上的動點(diǎn),將線段OM繞O點(diǎn)順時針旋轉(zhuǎn)得到線段ON,設(shè)點(diǎn)N的軌跡為曲線.以坐標(biāo)原點(diǎn)O為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.

(1)求曲線的極坐標(biāo)方程;

(2)在(1)的條件下,若射線與曲線分別交于A, B兩點(diǎn)(除極點(diǎn)外),且有定點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某村電費(fèi)收取有以下兩種方案供農(nóng)戶選擇:

方案一:每戶每月收取管理費(fèi)2元,月用電量不超過30度時,每度0.5元;超過30度時,超過部分按每度0.6元收。

方案二:不收取管理費(fèi),每度0.58元.

1)求方案一的收費(fèi)Lx)(元)與用電量x(度)間的函數(shù)關(guān)系.若老王家九月份按方案一繳費(fèi)35元,問老王家該月用電多少度?

2)老王家該月用電量在什么范圍內(nèi),選擇方案一比選擇方案二好?

查看答案和解析>>

同步練習(xí)冊答案