4.已知集合A={x|2≤x≤8},B={x|1<x<6},U=R.
求A∪B,A∩B,(∁UA)∩B,∁U(A∪B).

分析 直接利用交、并、補集的混合運算得答案.

解答 解:∵A={x|2≤x≤8},B={x|1<x<6},U=R.
∴A∪B={x|1<x≤8},A∩B={x|2≤x<6},
UA={x|x<2,或x>8},(∁UA)∩B={x|1<x<2},
U(A∪B)={x|x≤1或x>8}.

點評 本題考查交、并、補集的混合運算,是基礎的計算題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=lnx,g(x)=f(x)+ax2-3x,函數(shù)g(x)的圖象在點(1,g(1))處的切線平行于x軸.
(1)求a的值;
(2)求函數(shù)g(x)的極值;
(3)設斜率為k的直線與函數(shù)f(x)的圖象交于兩點A(x1,y1),B(x2,y2),(x1<x2),證明$\frac{1}{{x}_{2}}$<k<$\frac{1}{{x}_{1}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設雙曲線的方程為$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,其左,右焦點分別為F1,F(xiàn)2,若雙曲線右支上一點P滿足∠F1PF2=$\frac{π}{3}$,${S}_{△P{F}_{1}{F}_{2}}$=$3\sqrt{3}{a^2}$,則該雙曲線的離心率為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=sinx+$\sqrt{3}$cosx.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{x^2},(x≤1)}\\{x+1,(x>1)}\end{array}}\right.$,則f(f(-2))=5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.設F是拋物線C:y2=4x的焦點,過F的直線l交拋物線C于A,B兩點,當|AB|=6時,以AB為直徑的圓與y軸相交所得弦長是2$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.設函數(shù)f(x)=2x,對于任意的x1,x2(x1≠x2),有下列命題
①f(x1+x2)=f(x1)•f(x2
②f(x1•x2)=f(x1)+f(x2
③$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$
④$f(\frac{{{x_1}+{x_2}}}{2})<\frac{{f({x_1})+f({x_2})}}{2}$
⑤曲線g(x)=x2與曲線f(x)=2x有三個公共點.
其中正確的命題序號是①③④⑤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.如圖,四邊形ABCD為菱形,四邊形CEFB為正方形,平面ABCD⊥平面CEFB,CE=1,∠BCD=60°,若二面角D-CE-F的大小為α,異面直線BC與AE所成角的大小為β,則( 。
A.tanα=$\sqrt{3}$,tanβ=$\frac{\sqrt{7}}{3}$B.tanα=$\frac{\sqrt{7}}{3}$,tanβ=$\sqrt{3}$
C.tanα=$\frac{2\sqrt{3}}{3}$,tanβ=$\frac{\sqrt{6}}{3}$D.tanα=$\frac{\sqrt{7}}{3}$,tanβ=$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,已知四棱錐P-ABCD的底面ABCD是邊長為2的正方形,PD=1,PD⊥面ABCD,E為棱BC的中點.
(1)求四棱錐P-ABCD的體積;
(2)求異面直線PB和DE所成角的余弦值.

查看答案和解析>>

同步練習冊答案