已知P1(x1,x2),P2(x2,y2)是以原點(diǎn)O為圓心的單位圓上的兩點(diǎn),∠P1OP2=θ(θ為鈍角).若sin(θ+
π
4
)=
3
5
,則的x1x2+y1y2值為
 
考點(diǎn):簡單曲線的極坐標(biāo)方程
專題:坐標(biāo)系和參數(shù)方程
分析:由條件求得cos(θ+
π
4
)的值,可得cosθ 的值,再利用兩個(gè)向量的數(shù)量積的定義、兩個(gè)向量的數(shù)量積公式求得
x1x2+y1y2的值.
解答: 解:由題意可得
π
2
<θ<π,sin(θ+
π
4
)=
3
5
>0,
θ+
π
4
還是鈍角,∴cos(θ+
π
4
)=-
4
5
,
2
2
cosθ+
2
2
sinθ=
3
5
2
2
cosθ-
2
2
sinθ=-
4
5
,
∴cosθ=-
2
10

OP1
OP2
=x1•x2+y1•y2=|
OP1
|•|
OP2
|cosθ=1×1×(-
2
10
)=-
2
10
,
故答案為:-
2
10
點(diǎn)評(píng):本題主要考查同角三角函數(shù)的基本關(guān)系,兩個(gè)向量的數(shù)量積的定義、兩個(gè)向量的數(shù)量積公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

曲線E:
x2
m
+
y2
n
=1(m>0,n>0)
與正方形M:|x|+|y|=4的邊界相切.
(1)求m+n的值;
(2)設(shè)直線l:y=x+b交曲線E于A,B,交M于C,D,且|CD|=4
2
.是否存在這樣的曲線E,使得|CA|,|AB|,|BD|成等差數(shù)列?若存在,求出實(shí)數(shù)b的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=axlnx,(a≠0).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a<0時(shí),若對(duì)于任意的x∈(0,+∞),都有f(x)<3ax+1成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式|a-2|≤x2+2y2+3z2對(duì)滿足x+y+z=1的一切實(shí)數(shù)x,y,z都成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是等差數(shù)列,a1=1,a2=3,則a1+a2+a 22+…+a 2n-1+a 2n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1+a4=10,O是平面上任意一點(diǎn),A、B、C三點(diǎn)共線,且滿足
O
A
=an
O
B
-(1+an-1)•
O
C
,則{an}的前10項(xiàng)和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a≥x2-ex-(x-1),則a的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的函數(shù)f(x)=ex-ax在(0,1]上是增函數(shù),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
2
x2-4lnx的單調(diào)遞減區(qū)間是( 。
A、(-2,2)
B、(0,2)
C、(2,+∞)
D、(0,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案