9.求x,y的值,使它們滿足約束條件$\left\{\begin{array}{l}{x-y≥-2}\\{x+y≤6}\\{x≥0}\\{y≥0}\end{array}\right.$并使目標函數(shù)z=3x+6y的值最大.

分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合進行求解即可.

解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
由z=3x+6y得y=-$\frac{1}{2}$x+$\frac{z}{6}$,
平移直線y=-$\frac{1}{2}$x+$\frac{z}{6}$,由圖象知當直線經(jīng)過A時,直線y=-$\frac{1}{2}$x+$\frac{z}{6}$的截距最大,此時z最大,
由$\left\{\begin{array}{l}{x-y=-2}\\{x+y=6}\end{array}\right.$得$\left\{\begin{array}{l}{x=2}\\{y=4}\end{array}\right.$,即A(2,4),此時z最大.

點評 本題主要考查線性規(guī)劃的應(yīng)用,利用目標函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

19.已知α∥β∥γ,直線a與b分別交α,β,γ于點A,B,C和D,E,F(xiàn),且AB=2,BC=3,DE=4,則EF=6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.若f(x)是以2為周期的奇函數(shù),且當x∈(-1,0)時,f(x)=2x+1.則f($\frac{9}{2}$)的值為0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知單調(diào)遞增的等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2,a4的等差中項.
(1)求數(shù)列{an}的通項公式;
(2)若bn=anlog${\;}_{\frac{1}{2}}$an,數(shù)列{bn}的前n項和為Sn,求使Sn+n•2n+1>30成立的正整數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.關(guān)于x的方程sinx+cosx=k在區(qū)間[0,π]內(nèi)有兩個不同的實根x1,x2,則實數(shù)k的取值范圍是[1,$\sqrt{2}$),且sin(x1+x2)=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.不等式|x-3|+|6-x|≥5的解集為{x|x≤2或x≥7}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.設(shè)集合A={x|x+1=0}與B={x|x2-1=0},求A∩B和A∪B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若函數(shù)y=ax(a>0且a≠1)在[0,1]上的最大值與最小值之和為3,則tan$\frac{a•180°}{6}$的值為( 。
A.0B.$\frac{\sqrt{3}}{3}$C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.若logm7<logn7<0,那么m,n滿足的條件是( 。
A.0<n<m<1B.n>m>1C.m>n>1D.0<m<n<1

查看答案和解析>>

同步練習冊答案