【題目】在棱長(zhǎng)為1的正方體ABCD﹣A1B1C1D1中,AC∩BD=O,E是線(xiàn)段B1C(含端點(diǎn))上的一動(dòng)點(diǎn),則
①OE⊥BD1;
②OE面A1C1D;
③三棱錐A1﹣BDE的體積不是定值;
④OE與A1C1所成的最大角為90°.
上述命題中正確的個(gè)數(shù)是( 。
A.1B.2C.3D.4
【答案】C
【解析】
利用線(xiàn)面垂直的判定和性質(zhì),面面平行的性質(zhì),三棱錐等積轉(zhuǎn)換,異面直線(xiàn)所成角,對(duì)命題逐個(gè)分析,得到結(jié)果.
利用平面,可得OE⊥BD1,所以①正確;
利用平面平面,可得OE面A1C1D,所以②正確;
根據(jù),且底面的面積為定值,且到平面的距離為定值,所以該棱錐的體積為定值,所以③不正確;
當(dāng)在處時(shí),OE與A1C1所成的的角為90°,所以④正確;
所以上述命題中正確的個(gè)數(shù)為3,
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正四棱錐的底面正方形邊長(zhǎng)是3,是在底面上的射影,,是上的一點(diǎn),過(guò)且與、都平行的截面為五邊形.
(1)在圖中作出截面,并寫(xiě)出作圖過(guò)程;
(2)求該截面面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,,分別為,的中點(diǎn)是由繞直線(xiàn)旋轉(zhuǎn)得到,連結(jié),,.
(1)證明:平面;
(2)若,棱上是否存在一點(diǎn),使得?若存在,確定點(diǎn) 的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)有下列四個(gè)命題:
p1:兩兩相交且不過(guò)同一點(diǎn)的三條直線(xiàn)必在同一平面內(nèi).
p2:過(guò)空間中任意三點(diǎn)有且僅有一個(gè)平面.
p3:若空間兩條直線(xiàn)不相交,則這兩條直線(xiàn)平行.
p4:若直線(xiàn)l平面α,直線(xiàn)m⊥平面α,則m⊥l.
則下述命題中所有真命題的序號(hào)是__________.
①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某沙漠地區(qū)經(jīng)過(guò)治理,生態(tài)系統(tǒng)得到很大改善,野生動(dòng)物數(shù)量有所增加.為調(diào)查該地區(qū)某種野生動(dòng)物的數(shù)量,將其分成面積相近的200個(gè)地塊,從這些地塊中用簡(jiǎn)單隨機(jī)抽樣的方法抽取20個(gè)作為樣區(qū),調(diào)查得到樣本數(shù)據(jù)(xi,yi)(i=1,2,…,20),其中xi和yi分別表示第i個(gè)樣區(qū)的植物覆蓋面積(單位:公頃)和這種野生動(dòng)物的數(shù)量,并計(jì)算得,,,,.
(1)求該地區(qū)這種野生動(dòng)物數(shù)量的估計(jì)值(這種野生動(dòng)物數(shù)量的估計(jì)值等于樣區(qū)這種野生動(dòng)物數(shù)量的平均數(shù)乘以地塊數(shù));
(2)求樣本(xi,yi)(i=1,2,…,20)的相關(guān)系數(shù)(精確到0.01);
(3)根據(jù)現(xiàn)有統(tǒng)計(jì)資料,各地塊間植物覆蓋面積差異很大.為提高樣本的代表性以獲得該地區(qū)這種野生動(dòng)物數(shù)量更準(zhǔn)確的估計(jì),請(qǐng)給出一種你認(rèn)為更合理的抽樣方法,并說(shuō)明理由.
附:相關(guān)系數(shù)r=,≈1.414.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】石雕工藝承載著幾千年的中國(guó)石雕文化,隨著科技的發(fā)展,機(jī)器雕刻產(chǎn)品越來(lái)越多.某石雕廠計(jì)劃利用一個(gè)圓柱形的石材(如圖1)雕刻制作一件工藝品(如圖2),該作品的上方是一個(gè)球體,下方是一個(gè)正四棱柱,經(jīng)測(cè)量,圓柱形石材的底面半徑米,高米,制作要求如下:首先需將石材切割為體積相等的兩部分(分別稱(chēng)為圓柱A和圓柱B),要求切面與原石材的上、下底面平行(不考慮損耗),然后將圓柱A切割打磨為一個(gè)球體,將圓柱B切割打磨為一個(gè)長(zhǎng)方體,則加工打磨后所得工藝品的體積的最大值為________立方米.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱錐中,四邊形為矩形,,,.
(1)求證:平面;
(2)設(shè),求平面與平面所成的二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】半正多面體亦稱(chēng)“阿基米德多面體”,是由邊數(shù)不全相同的正多邊形為面的多面體,體現(xiàn)了數(shù)學(xué)的對(duì)稱(chēng)美.如圖,將正方體沿交于一頂點(diǎn)的三條棱的中點(diǎn)截去一個(gè)三棱錐,如此共可截去八個(gè)三棱錐,得到一個(gè)有十四個(gè)面的半正多面體,它們的棱長(zhǎng)都相等,其中八個(gè)為正三角形,六個(gè)為正方形,稱(chēng)這樣的半正多面體為二十四等邊體.若二十四等邊體的棱長(zhǎng)為2,則其體積為______;若其各個(gè)頂點(diǎn)都在同一個(gè)球面上,則該球的表面積為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)(a>0).
(1)證明:當(dāng)x∈[1,+∞)時(shí),f(x)≥1.
(2)當(dāng)0<a≤1時(shí),對(duì)于任意的x∈(0,+∞),f(x)≥m,求整數(shù)m的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com