函數(shù)y=logax+1(a>0,a≠1)的圖象恒過定點A,若點A在直線mx+ny-1=0上,其中mn>0,則
2
m
+
1
n
的最小值為
 
考點:基本不等式
專題:不等式的解法及應用
分析:利用loga1=0,可得函數(shù)y=logax+1(a>0,a≠1)的圖象恒過定點A(1,1),利用點A在直線mx+ny-1=0上,可得m+n=1,再利用“乘1法”和基本不等式即可得出
2
m
+
1
n
的最小值.
解答: 解:由函數(shù)y=logax+1(a>0,a≠1),令x=1,可得y=1.
∴此函數(shù)圖象恒過定點A(1,1),
∵點A在直線mx+ny-1=0上,∴m+n=1.
∵mn>0,∴
2
m
+
1
n
=(m+n)(
2
m
+
1
n
)
=3+
2n
m
+
m
n
3+2
2n
m
m
n
=3+2
2
,當且僅當m=
2
n=2-
2

2
m
+
1
n
的最小值為 3+2
2

故答案為:3+2
2
點評:本題考查了對數(shù)的運算性質(zhì)、點與直線的關系、“乘1法”和基本不等式等基礎知識與基本技能方法,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(2x+
π
6
)+m
(1)寫出函數(shù)f(x)的周期及單調(diào)遞減區(qū)間;
(2)當x∈[-
π
6
π
3
]時,函數(shù)f(x)的最小值為2,求:當x取何值時,函數(shù)f(x)取得最大值,最大值為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=4lnx+x2-ax(a∈R).
(Ⅰ)當a=6時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)有兩個極值點x1,x2,且x1∈(0,1],求證:f(x1)-f(x2)≥3-4ln2;
(Ⅲ)設g(x)=f(x)+2ln
ax+2
6x2
,對于任意a∈(2,4)時,總存在x∈[
3
2
,2],使g(x)>k(4-a2)成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex,g(x)=ln(x+m).直線l:y=kx+b經(jīng)過點P(-1,0)且與曲線y=f(x)相切.
(1)求切線l的方程.
(2)若關于x的不等式kx+b≥g(x)恒成立,求實數(shù)m的最大值.
(3)設F(x)=f(x)-g(x),若函數(shù)F(x)有唯一的零點x0,求證-1<x0<-
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=x+
2
x
(x≥2)的值域是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定點A(-1,
3
),動點P按逆時針方向沿著單位圓從P0(1,0)處開始運動(t=0秒),且每秒運動的弧長為
π
5
弧度,在t秒內(nèi)(t>0)到達點P.記函數(shù)f(t)=
OA
OP
,向量
OQ
=
OA
+
OP
,關于f(t)有以下結(jié)論:
①f(t)=-
3
sin
π
5
t+cos
π
5
t;②f(t)=2sin(
π
5
t-
π
6
);③Q點的軌跡是以A為圓心,半徑為1的圓;
④當f(t)第一次取得最大值時,需要的時間是t=
3
10
秒;⑤1≤|
OQ
|≤
3
其中正確的是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
x2
x4+9
(x>0)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

安排甲、乙、丙三人在周一至周五這五天值班,每天安排一人,每個人至少值班一天,則有
 
種不同的安排方法.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知M={(x,y)|y=2x},N={(x,y)|y=a},若M∩N=∅,則實數(shù)a的取值范圍為( 。
A、(-∞,1)
B、(-∞,1]
C、(-∞,0)
D、(-∞,0]

查看答案和解析>>

同步練習冊答案