已知M={(x,y)|y=2x},N={(x,y)|y=a},若M∩N=∅,則實數(shù)a的取值范圍為( 。
A、(-∞,1)
B、(-∞,1]
C、(-∞,0)
D、(-∞,0]
考點:交集及其運算
專題:集合
分析:由題意畫出圖形,數(shù)形結合即可得到實數(shù)a的取值范圍.
解答: 解:如圖,

M={(x,y)|y=2x},N={(x,y)|y=a},若M∩N=∅,
則a≤0.
∴實數(shù)a的取值范圍為(-∞,0].
故選:D.
點評:本題考查交集及其運算,考查了數(shù)形結合的解題思想方法,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=logax+1(a>0,a≠1)的圖象恒過定點A,若點A在直線mx+ny-1=0上,其中mn>0,則
2
m
+
1
n
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
-x2-x+2
的單調遞增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={-2,-1,0,1},集合B={x|x2-1≤0,x∈R},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=1,an+1=-
1
an+2
,則數(shù)列{an}的通項公式為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設y=x4+ln3,則y′=(  )
A、4x3
B、4x3+
1
3
C、x4lnx
D、x4lnx+
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設變量x,y滿足
-1≤x+y≤1
-1≤x-y≤1
,則2x+y的最大值和最小值分別為( 。
A、1,-1B、2,-2
C、1,-2D、2,-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求證:對于任意角θ,cos4θ-sin4θ=cos2θ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知正三棱柱ABC-A1B1C1的底面邊長是2,D是側棱CC1的中點,直線AD與側面BB1C1C所成的角為45°.
(1)求此正三棱柱的側棱長;
(2)求二面角A-BD-C的余弦值大小.

查看答案和解析>>

同步練習冊答案