7.旅行社為某旅游團包飛機旅游,其中旅行社的包機費為15000元.旅游團中每人的飛機票按以下方式與旅行社結(jié)算:若旅游團的人數(shù)為30人或30人以下,每張飛機票的價格為900元;若旅游團的人數(shù)多于30人,則給予優(yōu)惠,每多1人,每張機票的價格減少10元,但旅游團的人數(shù)最多有75人.
(1)寫出飛機票的價格關(guān)于旅游團的人數(shù)的函數(shù)關(guān)系式;
(2)旅游團的人數(shù)為多少時,旅行社可獲得最大利潤?

分析 (1)根據(jù)自變量x的取值范圍,分0<x≤30或30<x≤75列出函數(shù)解析式即可;
(2)利用(1)中的函數(shù)解析式,結(jié)合自變量的取值范圍和配方法,分段求最值,即可得到結(jié)論

解答 解:(1)設(shè)旅游團人數(shù)為x,飛機票價格為y元.當(dāng)30<x≤75時,y=900-10(x-30)
=-10x+1200.故所求函數(shù)為y=$\left\{\begin{array}{l}900(1≤x≤30,x∈N)\\-10x+1200(30<x≤75,x∈N).\end{array}$
(2)設(shè)利潤函數(shù)為f(x),則f(x)=y•x-15000
=$\left\{\begin{array}{l}900x-15000(1≤x≤30,x∈N)\\-10x2+1200x-15000(30<x≤75,x∈N).\end{array}$
當(dāng)1≤x≤30時,f(x)max=f(30)=12000;
當(dāng)30<x≤75時,f(x)max=f(60)=21000>12000.
故旅游團的人數(shù)為60時,旅游社可獲得最大利潤.

點評 本題考查函數(shù)解析式的確定,考查運用配方法求二次函數(shù)的最值,以及考查學(xué)生對實際問題分析解答能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若關(guān)于x的方程|2x+4-x2|=a恰有三個不同實數(shù)解,則實數(shù)a的值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.彈簧掛著的小球做上下振動,在時間t(s)內(nèi)離開平衡位置(靜止時的位置)的距離h(cm)由下面的函數(shù)關(guān)系式表示.h=3sin(2t+$\frac{π}{4}$).
(1)求小球開始振動的位置;
(2)求小球第一次上升到最高點和下降到最低點時的位置;
(3)經(jīng)過多長時間小球往返振動一次?
(4)每秒內(nèi)小球能往返振動多少次?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知直線l經(jīng)過點(4,0),且傾斜角為$\frac{3}{4}π$,圓M以$(\sqrt{2},\frac{π}{4})$為圓心,過極點.
(Ⅰ)求l與M的極坐標(biāo)方程;
(Ⅱ)判斷l(xiāng)與M的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知,x,y滿足約束條件$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{y≥\frac{1}{2}(x-3)}\end{array}\right.$,則z=2x+y的最小值為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.△ABC中,點D在BC上,AD平分∠BAC,若$\overrightarrow{AB}=\overrightarrow{a}$,$\overrightarrow{AC}=\overrightarrow$,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,則$\overrightarrow{AD}$=(  )
A.$\frac{2}{5}\overrightarrow{a}+\frac{3}{5}\overrightarrow$B.$\frac{4}{5}\overrightarrow{a}+\frac{3}{5}\overrightarrow$C.$\frac{3}{5}\overrightarrow{a}+\frac{4}{5}\overrightarrow$D.$\frac{3}{5}\overrightarrow{a}+\frac{2}{5}\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知定義在R上的單調(diào)函數(shù)f(x)的值域是(-∞,0),則關(guān)于x的方程[f(x)]3-3f(x)-1=0的解的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若指數(shù)函數(shù)過點(2,4),則它的解析式為( 。
A.y=2xB.y=(-2)xC.y=($\frac{1}{2}$)xD.y=(-$\frac{1}{2}$)x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.對任何x∈(1,a),都有( 。
A.loga(logax)<logax2<(logax)2B.loga(logax)<(logax)2<logax2
C.logax2<loga(logax)<(logax)2D.(logax)2<logax2<loga(logax)

查看答案和解析>>

同步練習(xí)冊答案