【題目】甲、乙、丙3人投籃,投進(jìn)的概率分別是.
(Ⅰ)現(xiàn)3人各投籃1次,求3人都沒有投進(jìn)的概率;
(Ⅱ)用表示乙投籃3次的進(jìn)球數(shù),求隨機(jī)變量的概率分布及數(shù)學(xué)期望;
【答案】(1)(2)
【解析】分析:(Ⅰ)綜合利用獨(dú)立事件的概率公式與對立事件的概率公式求解即可;(Ⅱ) 隨機(jī)變量服從二項(xiàng)分布,直接利用二項(xiàng)分布的期望公式求解即可.
詳解:(Ⅰ)記"甲投籃1次投進(jìn)"為事件A1 , "乙投籃1次投進(jìn)"為事件A2 , "丙投籃1次投進(jìn)"為事件
A3, "3人都沒有投進(jìn)"為事件A . 則 P(A1)=, P(A2)=, P(A3)=,
∴ P(A) = P()=P()·P()·P()
= [1-P(A1)] ·[1-P (A2)] ·[1-P (A3)]=(1-)(1-)(1-)=
∴3人都沒有投進(jìn)的概率為.
(Ⅱ)隨機(jī)變量的可能值有0,1,2,3), ~ B(3,),
P(=k)=C3k()k()3-k (k=0,1,2,3) , =np = 3×= .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為慶祝成立二十周年,特舉辦《快樂大闖關(guān)》競技類有獎(jiǎng)活動(dòng),該活動(dòng)共有四關(guān),由兩名男職員與兩名女職員組成四人小組,設(shè)男職員闖過一至四關(guān)概率依次是,女職員闖過一至四關(guān)的概率依次是
(1)求女職員闖過四關(guān)的概率;
(2)設(shè)表示四人小組闖過四關(guān)的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,F(xiàn)1 , F2分別為橢圓 + =1(a>b>0)的左、右焦點(diǎn),頂點(diǎn)B的坐標(biāo)為(0,b),連接BF2并延長交橢圓于點(diǎn)A,過點(diǎn)A作x軸的垂線交橢圓于另一點(diǎn)C,連接F1C.
(1)若點(diǎn)C的坐標(biāo)為( , ),且BF2= ,求橢圓的方程;
(2)若F1C⊥AB,求橢圓離心率e的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,傾斜角為 的直線l與曲線C: ,(α為參數(shù))交于A,B兩點(diǎn),且|AB|=2,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,則直線l的極坐標(biāo)方程是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC與直角梯形ABDE所在平面垂直,BD∥AE,BD=2AE,AE⊥AB,M為AB的中點(diǎn).
(1)證明:CM⊥DE;
(2)在邊AC上找一點(diǎn)N,使CD∥平面BEN.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次方程.
(1)若,是一枚骰子擲兩次所得到的點(diǎn)數(shù),求方程有兩正根的概率;
(2)若,,求方程沒有實(shí)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若a=1,求f(x)的極值;
(2)若存在x0∈[1,e],使得f(x0)<g(x0)成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義域?yàn)?/span>的函數(shù),如果同時(shí)滿足以下三條:①對任意的,總有;②;③若,都有成立,則稱函數(shù)為理想函數(shù).
(1) 若函數(shù)為理想函數(shù),求的值;
(2)判斷函數(shù)是否為理想函數(shù),并予以證明;
(3) 若函數(shù)為理想函數(shù),假定,使得,且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=aexlnx+ ,曲線y=f(x)在點(diǎn)(1,f(1))處得切線方程為y=e(x﹣1)+2.
(1)求a、b;
(2)證明:f(x)>1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com